首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4770篇
  免费   628篇
  国内免费   1161篇
化学   5660篇
晶体学   49篇
力学   42篇
综合类   17篇
数学   3篇
物理学   788篇
  2024年   13篇
  2023年   46篇
  2022年   99篇
  2021年   130篇
  2020年   193篇
  2019年   178篇
  2018年   163篇
  2017年   187篇
  2016年   211篇
  2015年   287篇
  2014年   288篇
  2013年   531篇
  2012年   398篇
  2011年   394篇
  2010年   316篇
  2009年   326篇
  2008年   311篇
  2007年   308篇
  2006年   289篇
  2005年   280篇
  2004年   234篇
  2003年   212篇
  2002年   144篇
  2001年   118篇
  2000年   118篇
  1999年   92篇
  1998年   84篇
  1997年   82篇
  1996年   47篇
  1995年   45篇
  1994年   45篇
  1993年   27篇
  1992年   23篇
  1991年   12篇
  1990年   21篇
  1989年   17篇
  1988年   17篇
  1987年   33篇
  1986年   38篇
  1985年   61篇
  1984年   25篇
  1983年   24篇
  1982年   36篇
  1981年   30篇
  1980年   18篇
  1979年   6篇
  1978年   2篇
排序方式: 共有6559条查询结果,搜索用时 15 毫秒
1.
In this paper, we studied commercially available precipitated rice husk silica (RHS) with conventional precipitated silica, which has nearly the same surface area, and replaced part of the carbon black with RHS and conventional silica in a basic tread formulation. All formulations were mixed with the same amount of filler during the study. Silica was used at 15, 30 and 50 phr loading, and part of the carbon black was replaced by silica. Compound curing characteristics, physical properties, rebound resilience, heat generation, abrasion loss, dynamic properties and morphology were analyzed. The results indicated that RHS demonstrated compound properties comparable to those of conventional silica. As part of the carbon black was replaced with conventional silica, a slower cure rate, higher rebound resilience, lower heat generation, lower abrasion loss, and lower tan delta were observed with no significant change in physical properties, but some changes in physical properties were observed using one way ANOVA analysis. We found the same trend when replacing part of the carbon black with RHS, such as a slower cure rate, higher rebound resilience, lower heat generation, lower abrasion loss, and lower tan delta with no significant change in physical properties, but some changes in physical properties were observed using one way ANOVA. This sustainable material could be used to replace conventional silica in tire compounding, as well as to replace a portion of carbon black with RHS for improved heat build-up, rolling resistance, and abrasion loss.  相似文献   
2.
In this work, a vanillin complex is immobilized onto MCM-41 and characterized by FT-IR, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and BET techniques. This supported Schiff base complex was found to be an efficient and recoverable catalyst for the chemoselective oxidation of sulfides into sulfoxides and thiols into their corresponding disulfides (using hydrogen peroxide as a green oxidant) and also a suitable catalyst for the preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in water at 90°C. Using this protocol, we show that a variety of disulfides, sulfoxides, and 2,3-dihydroquinazolin-4(1H)-one derivatives can be synthesized in green conditions. The catalyst can be recovered and recycled for further reactions without appreciable loss of catalytic performance.  相似文献   
3.
Highly dispersed palladium nanoclusters incorporated on amino‐functionalized silica sphere surfaces (Pd/SiO2‐NH2) were fabricated by a simple one‐pot synthesis utilizing 3‐(2‐aminoethylamino)propyltrimethoxysilane (AAPTS) as coordinating agent. Uniform palladium nanoclusters with an average size of 1.1 nm can be obtained during the co‐condensation of tetraethyl orthosilicate and AAPTS owing to the strong interaction between palladium species and amino groups in AAPTS. The palladium particle size can be controlled by addition of AAPTS and plays a significant role in the catalytic performance. The Pd/SiO2‐NH2 catalyst exhibits high catalytic activity for succinic acid hydrogenation with 100% conversion and 94% selectivity towards γ‐butyrolactone using 1,4‐dioxane as solvent at 240°C and 60 bar for 4 h. Moreover, the Pd/SiO2‐NH2 catalyst is robust and readily reusable without loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
4.
Following a thermal reduction method, platinum nanoparticles were synthesized and stabilized by polyvinylpyrrolidone. The colloidal platinum nanoparticles were stable for more than 3 months. The micrograph analysis unveiled that the colloidal platinum nanoparticles were well dispersed with an average size of 2.53 nm. The sol–gel‐based inverse micelle strategy was applied to synthesize mesoporous iron oxide material. The colloidal platinum nanoparticles were deposited on mesoporous iron oxide through the capillary inclusion method. The small‐angle X‐ray scattering analysis indicated that the dimension of platinum nanoparticles deposited on mesoporous iron oxide (Pt‐Fe2O3) was 2.64 nm. X‐ray photoelectron spectroscopy (XPS) data showed that the binding energy on Pt‐Fe2O3 surface decreased owing to mesoporous support–nanoparticle interaction. Both colloidal and deposited platinum nanocatalysts improved the degradation of methyl orange under reduction conditions. The activation energy on the deposited platinum nanocatalyst interface (2.66 kJ mol?1) was significantly lowered compared with the one on the colloidal platinum nanocatalyst interface (40.63 ± 0.53 kJ mol?1).  相似文献   
5.
Mesoporous core–shell nanostructures with controllable ultra-large open channels in their nanoshells are of great interest. However, soft template-directed cooperative assembly to mesoporous nanoshells with highly accessible pores larger than 30 nm, or even above 50 nm into macroporous range, remains a significant challenge. Herein we report a general approach for precisely tailored coating of hierarchically macro-/mesoporous polymer and carbon shells, possessing highly accessible radial channels with extremely wide pore size distribution from ca. 10 nm to ca. 200 nm, on diverse functional materials. This strategy creates opportunities to tailor the interfacial assembly of irregular mesostructured nanounits on core materials and generate various core–shell nanomaterials with controllable pore architectures. The obtained Fe,N-doped macro-/mesoporous carbon nanoshells show enhanced electrochemical performance for the oxygen reduction reaction in alkaline condition.  相似文献   
6.
In this work the results of the statistical topometric analysis of fracture surfaces of soda-lime-silica glass with and without ionic exchange treatment are reported. In this case, the mechanism of substitution is K+-Na+. atomic force microscopy (AFM) was employed to record the topometric data from the fracture surface. The roughness exponent (ζ) and the correlation length (ξ) were calculated by the variable bandwidth method. The analysis for both glasses (subjected and non-subjected to ionic exchange) for ζ shows a value ∼0.8, this value agrees well with that reported in the literature for rapid crack propagation in a variety of materials. The correlation length shows different values for each condition. These results, along with those of microhardness indentations suggest that the self-affine correlation length is influenced by the complex interactions of the stress field of microcracks with that resulting from the collective behavior of the point defects introduced by the strengthening mechanism of ionic exchange.  相似文献   
7.
A G 4.0 dendrimer-like poly (amido amine) (PAMAM) based on silica nanoparticles was fabricated via a divergent approach.It was built from γ-aminopropyi silica nanoparfides (APSN) core via repetitive addition of acrylate (MA) and hexylenediamine (HDA). FT-IR and EA were used to monitor the progress of dendrimer during each step. The amino group content of the resulting product increased from 0.49 to 3.72 mmol/g after the 4th generation. In addition, the percentage of grafting increased with increasing generation and reached to 65.9% after 4th generation. It was found that the resulting silica nanoparticles could be dispersed in methanol with a mean hydrodynamic particle diameter of 152.7 nm although the silica nanoparticles had agglomerated during the storage period.  相似文献   
8.
选用了钛酸丁酯、硬脂酸和乙二醇作为表面活性剂,采用表面化学修饰和表面物理修饰2种方法修饰纳米氧化钛,然后分散在乙二醇溶剂中形成溶胶溶液.并通过红外光谱仪、紫外分光计、原子力显微镜,分析了表面化学修饰后的纳米氧化钛表面化学结构的变化,观测了纳米氧化钛溶胶在乙二醇溶剂中稳定性.试验结果表明表面活性剂与纳米氧化钛的表面的不饱和键之间形成了新的化学结构,粒子表面可能接枝上有机长链,提高了纳米粒子在溶剂中的相容性.表面化学修饰后的纳米氧化钛与乙二醇溶剂形成了较稳定的溶胶体系,而且纳米溶胶粒径较小.表面活性剂添加量与纳米粒子添加量控制在(1~1.2):1时,可以获得纳米溶胶粒径较小,同时溶胶稳定性较好的纳米氧化钛-乙二醇溶胶体系.  相似文献   
9.
Composite silica particles were synthesized by a two-step (acid-base) process in an aqueous solution with a mixture of organoalkoxysilane monomers. The two-step process separates the hydrolysis and condensation procedures to easily control condensation rate. In this study, the silane monomers used were phenyltrimethoxysilane (PTMS), vinyltrimethoxysilane (VTMS), methyltrimethoxysilane (MTMS), and tetraethyl-orthosilicate (TEOS). The physical properties of the resultant composite particles were investigated with the change in the molar ratio of monomers. The size of the particles increased with increasing the molar ratio of RaSi(OR)3/RbSi(OR)3 or RaSi(OR)3/TEOS (Ra: phenyl; Rb: vinyl, methyl).  相似文献   
10.
The longitudinal relaxation times (T1) of water in concentrated silica and alumina slurries were measured as a function of solids content. It was shown that the results could be fit very well with a two-phase fast-exchange model between free and surface-bound water. As expected, values of T1 for bound water were in the order of 20–2000 times lower than that for free water, indicating a higher effective viscosity of the surface-bound water. The strength of the interaction depended on the particular surface, and all of the aluminas examined interacted more strongly with water than the two silicas studied, which themselves differed considerably. The chemical mechanical polishing (CMP) removal rate of tantalum by silica slurries was shown to be directly correlated with the interaction parameters, derived from the NMR relation times rather than with total surface hydroxyl group concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号