首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2022年   4篇
  2011年   1篇
  2005年   1篇
  1998年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
神经生长因子的化学发光标记与检测   总被引:1,自引:0,他引:1  
以辣根过氧化物酶(HRP)和吖啶酯(AE)为化学发光标记试剂分别标记神经生长因子(NGF)单克隆抗体,经分离纯化制成标记抗体(HRP-Ab,AE-Ab),采用化学发光免疫分析法(CLIA)对NGF进行检测,其检出限为0.5ng/mL,线性范围为2~128ng/mL.10例样本分别用CLIA和RIA进行检测,其结果无显著性差异.  相似文献   
2.
Seven new Lycopodium alkaloids, lannotinidines A-G (1-7), have been isolated from the club moss Lycopodium annotinum and L. annotinum var. acrifolium. Stereochemistry of 1-7 was elucidated by combination of NOESY correlations and chemical transformation. Lannotinidines B-E (2-5) elevated NGF mRNA expression.  相似文献   
3.
There is a significant overlap between brain areas with Zn(2+) and Cu(2+) pathological dys-homeostasis and those in which the nerve growth factor (NGF) performs its biological role. The protein NGF is necessary for the development and maintenance of the sympathetic and sensory nervous systems. Its flexible N-terminal region has been shown to be a critical domain for TrkA receptor binding and activation. Computational analyses show that Zn(2+) and Cu(2+) form pentacoordinate complexes involving both the His4 and His8 residues of the N-terminal domain of one monomeric unit and the His84 and Asp105 residues of the other monomeric unit of the NGF active dimer. To date, neither experimental data on the coordination features have been reported, nor has one of the hypotheses according to which Zn(2+) and Cu(2+) may have different binding environments or the Ser1 α-amino group could be involved in coordination been supported. The peptide fragment, encompassing the 1-14 sequence of the human NGF amino-terminal domain (NGF(1-14)), blocked at the C terminus, was synthesised and its Cu(2+) and Zn(2+) complexes characterized by means of potentiometric and spectroscopic (UV/Vis, CD, NMR, and EPR) techniques. The N-terminus-acetylated form of NGF(1-14) was also investigated to evaluate the involvement of the Ser1 α-amino group in metal-ion coordination. Our results demonstrate that the amino group is the first anchoring site for Cu(2+) and is involved in Zn(2+) coordination at physiological pH. Finally, a synergic proliferative activity of both NGF(1-14) and the whole protein on SHSY5Y neuroblastoma cell line was found after treatment in the presence of Cu(2+). This effect was not observed after treatment with the N-acetylated peptide fragment, demonstrating a functional involvement of the N-terminal amino group in metal binding and peptide activity.  相似文献   
4.
Brain cancer treatment, where glioblastoma represents up to 50% of all CNS malignancies, is one of the most challenging calls for neurooncologists. The major driver of this study was a search for new approaches for the treatment of glioblastoma. We tested live S. pyogenes, cathelicidin family peptides and NGF, assessing the oncolytic activity of these compounds as monotherapy or in combination with chemotherapeutics. For cytotoxicity evaluation, we used the MTT assay, trypan blue assay and the xCELLigence system. To evaluate the safety of the studied therapeutic approaches, we performed experiments on normal human fibroblasts. Streptococci and peptides demonstrated high antitumor efficiency against glioma C6 cells in all assays applied, surpassing the effect of chemotherapeutics (doxorubicin, carboplatin, cisplatin, etoposide). A real-time cytotoxicity analysis showed that the cell viability index dropped to 21% 2–5 h after S. pyogenes strain exposure. It was shown that LL-37, PG-1 and NGF also exhibited strong antitumor effects on C6 glioma cells when applied at less than 10−4 M. Synergistic effects for combinations of PG-1 with carboplatin and LL-37 with etoposide were shown. Combinations of S. pyogenes strain #7 with NGF or LL-37 demonstrated a cytotoxic effect (56.7% and 57.3%, accordingly) on C6 glioma cells after 3 h of exposure.  相似文献   
5.
The neuroprotective properties of piperine, the major alkaloid extracted from black pepper, have been under investigation, but its mechanism of action in excitotoxicity is still poorly understood. This study aimed to evaluate the protective effects of piperine with a focus on nerve growth factor (NGF) signalling in a kainic acid (KA) rat model of excitotoxicity. Rats were administered intraperitoneally (i.p.) piperine (10 or 50 mg/kg) before KA injection (15 mg/kg, i.p.). Our results show that KA exposure in rats caused seizure behaviour, intrinsic neuronal hyperactivity, glutamate elevation, hippocampal neuronal damage, and cognitive impairment. These KA-induced alterations could be restored to the normal state by piperine treatment. In addition, piperine decreased the expression of the NGF precursor proNGF and NGF-degrading protease matrix metalloproteinase 9, whereas it increased the expression of proNGF processing enzyme matrix metalloproteinase 7, NGF, and NGF-activated receptor TrkA in the hippocampus of KA-treated rats. Furthermore, KA decreased phosphorylation of the protein kinase B (Akt) and glycogen synthase kinase 3β (GSK3β) in the hippocampus, and piperine reversed these changes. Our data suggest that piperine protects hippocampal neurons against KA-induced excitotoxicity by upregulating the NGF/TrkA/Akt/GSK3β signalling pathways.  相似文献   
6.
Glioblastoma (GBM) is one of the most aggressive and lethal malignancy of the central nervous system. Temozolomide is the standard of care for gliomas, frequently results in resistance to drug and tumor recurrence. Therefore, further research is required for the development of effective drugs in order to guarantee specific treatments to succeed. The aim of current study was to investigate the effects of nerve growth factor (NGF), human cathelicidin (LL-37), protegrin-1 (PG-1), and temozolomide on bioenergetic function of mitochondria, clonogenicity, and migration of human U251 glioma cells. Colony formation assay was used to test the ability of the glioma cells to form colonies in vitro. The U251 glioma cells migration was evaluated using wound-healing assay. To study the mitochondrial metabolism in glioma cells we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) using a Seahorse XF cell Mito stress test kit and Seahorse XF cell Glycolysis stress kit, respectively. We revealed that LL-37, NGF, and TMZ show strong anti-tumorigenic activity on GMB. LL-37 (4 μM), TMZ (155 μM), and NGF (7.55 × 10−3 μM) inhibited 43.9%–60.3%, 73.5%–81.3%, 66.2% the clonogenicity of glioma U251 cells for 1–2 days, respectively. LL-37 (4 μM), and NGF (7.55 × 10−3 μM) inhibited the migration of U251 glioma cells on the third and fourth days. TMZ also inhibited the migration of human glioma U251 cells over 1–3 days. In contrast, PG-1 (16 μM) stimulated the migration of U251 glioma cells on the second, fourth, and sixth days. Anti-mitogenic and anti-migration activities of NGF, LL-37, and TMZ maybe are relation to their capacity to reduce the basal OCR, ATP-synthetase, and maximal respiration of mitochondria in human glioma U251 cells. Glycolysis, glycolytic capacity and glycolytic spare in glioma U251 cells haven`t been changed under the effect of NGF, LL-37, PG-1, and TMZ in regard to control level. Thus, LL-37 and NGF inhibit migration and clonogenicity of U251 glioma cells, which may indicate that these compounds have anti-mitogenic and anti-migration effects on human glioma cells. The study of the mechanisms of these effects may contribute in the future to the use of NGF and LL-37 as therapeutic agents for gliomas.  相似文献   
7.
Isorhamnetin-3-O-glucoside and astragalin, flavonol glucosides, were isolated from the petals of Paeonia lactiflora as neurite outgrowth-promoting compounds. Isoquercitrin, formed by demethylating the B ring of isorhamnetin-3-O-glucoside or by adding a hydroxyl group to the B ring of astragalin, was evaluated for neurite outgrowth-promoting activity and was compared with the activities of isorhamnetin-3-O-glucoside and astragalin. The activities of isorhamnetin, kaempferol, and quercetin, aglycones corresponding to isorhamnetin-3-O-glucoside, astragalin, and isoquercitrin, respectively, were also evaluated. Isorhamnetin-3-O-glucoside and astragalin showed much stronger neurite outgrowth-promoting activities than the activities of the other tested flavonoids. They exhibited relatively weak anti-oxidant activities and moderate AChE inhibitory activities compared to the activities of the other tested flavonoids. Isorhamnetin-3-O-glucoside and astragalin promoted morphological neurite outgrowth and the expression of neurofilaments induced by NGF in PC12 cells. Isorhamnetin-3-O-glucoside and astragalin might be candidate compounds as neural differentiation agents in peripheral nerves and functional food ingredients preventing cognitive decline.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号