首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13500篇
  免费   769篇
  国内免费   4865篇
化学   16204篇
晶体学   169篇
力学   171篇
综合类   91篇
数学   72篇
物理学   2427篇
  2024年   32篇
  2023年   423篇
  2022年   445篇
  2021年   448篇
  2020年   539篇
  2019年   622篇
  2018年   492篇
  2017年   523篇
  2016年   529篇
  2015年   491篇
  2014年   641篇
  2013年   1076篇
  2012年   749篇
  2011年   880篇
  2010年   729篇
  2009年   880篇
  2008年   940篇
  2007年   945篇
  2006年   885篇
  2005年   779篇
  2004年   777篇
  2003年   624篇
  2002年   509篇
  2001年   489篇
  2000年   504篇
  1999年   402篇
  1998年   412篇
  1997年   375篇
  1996年   310篇
  1995年   295篇
  1994年   245篇
  1993年   279篇
  1992年   191篇
  1991年   136篇
  1990年   123篇
  1989年   87篇
  1988年   81篇
  1987年   51篇
  1986年   24篇
  1985年   29篇
  1984年   26篇
  1983年   12篇
  1982年   20篇
  1981年   21篇
  1980年   15篇
  1979年   15篇
  1978年   8篇
  1977年   4篇
  1976年   4篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
2.
Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.  相似文献   
3.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
4.
A ruthenium-catalyzed formal anti-Markovnikov hydroamination of allylic alcohols for the synthesis of chiral γ-amino alcohols is presented. Proceeding via an asymmetric hydrogen-borrowing process, the catalysis allows racemic secondary allylic alcohols to react with various amines, affording enantiomerically enriched chiral γ-amino alcohols with broad substrate scope and excellent enantioselectivities (68 examples, up to >99 % ee).  相似文献   
5.
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
Oxidation catalysis is used to increase the performance of hydrogen peroxide in laundry bleach applications. Bleach catalysts provide cost‐effective, energy‐saving and environmentally friendly bleach systems yielding perfect stain removal at lower temperatures. This comparative study is based on the synthesis of bis[bis(salicylhydrazonephenoxy)manganese(III)] phthalocyaninatozinc(II) ( 2 ), bis[bis(salicylhydrazonephenoxy)cobalt(III)] phthalocyaninatozinc(II) ( 3 ) and bis[bis(salicylhydrazonephenoxy)iron(III)] phthalocyaninatozinc(II) ( 4 ) as tri‐nuclear complexes consisting of two Schiff base complexes substituting a zinc phthalocyanine. Complexion on the periphery to obtain complexes 2 , 3 , 4 was performed through the reaction of a Schiff base‐substituted phthalocyanine using MnCl2?4H2O, CoCl2?6H2O or FeCl3?6H2O salts in basic condition in dimethylformamide. Fourier transform infrared, 1H NMR, 13C NMR, UV–visible, inductively coupled plasma optical emission and mass spectra were applied to characterize the prepared compounds. The bleach performances of the three phthalocyanine compounds 2 , 3 , 4 were examined by the degradation of morin as hydrophilic dye. The degradation progress in the presence of catalysts 2 , 3 , 4 /H2O2 combination in aqueous solution was investigated using an online spectrophotometric method. It was found that the catalysts 2 , 3 , 4 exhibited better bleaching performance at 25 °C than tetraactylethylethylenediamine as bleach activator used in powder detergent formulations for stain removal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
This mini-review highlights key structural features that should be taken into account when creating ambipolar redox-active closed-shell metal-free molecules. This type of compound is strongly required for the fabrication of all-organic ‘poleless’ batteries and semiconductors. The suggested strategies aimed at stabilization of both oxidized (cationic) and reduced (anionic) redox-states are based on the comprehensive analysis of the most successful structures taken from the recent publications.  相似文献   
8.
The paper presents the synthesis and catalytic activity of CuFe2O4 nanoparticles. The CuFe2O4 nanoparticles have been prepared by sonochemical route under low power ultrasonic irradiation (UI) and using silent stirring at room temperature only (ST) along with co-precipitation method, without using any additive/capping agent. The synthesized magnetic nanoparticles were successfully used and compared for the synthesis of 4H-chromene-3-carbonitrile derivatives. The CuFe2O4 nanoparticles obtained by sonochemical route exhibit higher catalytic activity because of small size (0.5–5 nm), high surface area (214.55 m2/g), high thermal stability up to 700 °C, recyclability and reusability due to its magnetic characteristics than CuFe2O4 nanoparticles obtained by room temperature silent stirring. The synthesized CuFe2O4 nanoparticles were characterized by FT-IR, SEM–EDX, HR-TEM, XRD, TGA/DTA/DTG, BET, VSM techniques. The present method is of great interest due to its salient features such as environmentally compatible, efficient, short reaction time, chemoselectivity, high yield, cheap, moisture insensitive, green and recyclable catalyst which make it sustainable protocol.  相似文献   
9.
A nanomaterials-based novel molecular beacon has attracted growing attentions in fluorescent assays as many nanomaterials possess excellent quenching efficiency. In this work, a gold-based nanobeacon probe was established to detect organophosphorus pesticides for the first time. The constructed gold-based nanobeacon acted as a signal indicator and could display the decreasing of the intensity in the presence of targets, which competitively bound to single strand DNA. To achieve a high sensitive probe, some parameters including solution pH, temperature and reaction time were investigated and optimized. The gold-based nanobeacon probe assay was proved to be rapid and sensitive to achieve a detection limit of 0.035 μM for isocarbophos, 0.134 μM for profenofos, 0.384 μM for phorate and 2.35 μM for omethoate, respectively. The prepared nanobeacon effectively reduced the background and improved the detection sensitivity and selectivity. The probe is stable, easy to operate and does not need sophisticated instruments. These features makes the probe feasible for screening trace organophosphorus pesticides in real samples.  相似文献   
10.
The behaviors of ferromagnetic transition metals of the first period: Fe, Co and Ni are examined within density functional theory calculations in two dimensional carbon extended networks using model structure LiC6. Around geometry optimized structures, the energy-volume equations of states considering non magnetic and spin polarized configurations established ferromagnetic ground states with magnetizations –reduced with respect to the metals’– of 2 μB for FeC6 and 1 μB for CoC6 while no magnetic solution could be identified for NiC6. In the D6h point group of the P6/mmm space group lm decomposition of the d states results with increasing energy into doublet state E1g with d(x2-y2) and d(xy); singlet state A1g d(z2) and doublet state E2g d(xz) and d(yz) lying on EF and responsible of the onset of magnetic moments. This was mirrored via molecular orbital approach with a construct of Fe embedded between two extended carbon networks thus validating the model structure proposed for TC6 compounds. The 100% polarization in one spin channel allows proposing potential uses in spintronics applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号