首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2013年   1篇
  2011年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
A continuous‐flow, on‐line sample pretreatment technique using a silica gel microsyringe extractor has been developed. All steps including extraction, separation, clean‐up, and concentration occur in the microsyringe. The overall sample pretreatment process takes <10 min per sample. Different polarity chemicals in the plant sample are successively extracted and separated, and analyzed in parallel using HPLC–UV and HPLC–UV–MS/MS. Polycyclic aromatic hydrocarbons, alkylphenols, and plant hormones were determined as model compounds for nonpolar, intermediate polarity, and polar fractions, respectively. All the parameters that influence the extraction and separation efficiency of the microsyringe extractor have been optimized and evaluated. Under the optimized conditions, recoveries of target compounds ranged from 78.4 to 101.9%, the RSD was <12.8% and the square of the correlation coefficient was >0.99. Complex plant samples of Sambucus Mandshurica Kitag have been tested using this method. Fluorene, phenanthrene, pyrene, and plant hormones were detected in all the samples, and concentrations ranged from 24.2–34.9, 43.8–67.1, 25.9–29.2, and 14.5~110.8 ng/g, respectively.  相似文献   
2.
Yang C  Piao X  Qiu J  Wang X  Ren C  Li D 《Journal of chromatography. A》2011,1218(12):1549-1555
Sample pretreatment before chromatographic analysis is the most time consuming and error prone part of analytical procedures, yet it is a key factor in the final success of the analysis. A quantitative and fast liquid phase microextraction technique termed as gas purge microsyringe extraction (GP-MSE) has been developed for simultaneous direct gas chromatography-mass spectrometry (GC-MS) analysis of volatile and semivolatile chemicals without cleanup process. Use of a gas flowing system, temperature control and a conventional microsyringe greatly increased the surface area of the liquid phase micro solvent, and led to quantitative recoveries of both volatile and semivolatile chemicals within short extraction time of only 2 min. Recoveries of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and alkylphenols (APs) determined were 85-107%, and reproducibility was between 2.8% and 8.5%. In particular, the technique shows high sensitivity for semivolatile chemicals which is difficult to achieve in other sample pretreatment techniques such as headspace-liquid phase microextraction. The variables affecting extraction efficiency such as gas flow rate, extraction time, extracting solvent type, temperature of sample and extracting solvent were investigated. Finally, the technique was evaluated to determine PAHs, APs and OCPs from plant and soil samples. The experimental results demonstrated that the technique is economic, sensitive to both volatile and semivolatile chemicals, is fast, simple to operate, and allows quantitative extraction. On-site monitoring of volatile and semivolatile chemicals is now possible using this technique due to the simplification and speed of sample treatment.  相似文献   
3.
At the present study, a new and rapid headspace solvent microextraction (HSME), for the extraction and pre-concentration of the volatile components of plant sample into a microdrop was applied. The extraction occurred by suspending a microliter drop of the solvent from the tip of a microsyringe to the headspace of a ripen and powdered dry fruit sample (Iranian Pimpinella anisum seed) in a sealed vial for a preset extraction time, then the microdrop was retracted back into the microsyringe and injected directly into a GC injection port. The chemical composition of the HSME extracts were confirmed according to their retention indexes and mass spectra (EI, 70 eV); and quantitative analysis was performed by GC-FID.Parameters such as the nature of the extracting solvent, particle size of the sample, temperatures of the microdrop and sample, volume of sample and the extraction time were studied and optimized, and the method's performance was evaluated. The optimized conditions were: sample particle size, 1 mm; sample volume, 5 ml (in a 15 ml vial); sample temperature, 60 °C; microsyringe needle temperature, 0 °C; and extraction time, 10 min. Finally, accordingly, the percentage of trans-anethole (the major compound of P. anisum) and the relative standard deviation for extraction and determination of trans-anethole (seven-replicated analysis) were determined to be 90% and 3.9%, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号