首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   7篇
  国内免费   15篇
化学   182篇
晶体学   1篇
力学   2篇
综合类   2篇
物理学   5篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   8篇
  2020年   4篇
  2019年   11篇
  2018年   7篇
  2017年   6篇
  2016年   2篇
  2015年   7篇
  2014年   4篇
  2013年   12篇
  2012年   4篇
  2011年   6篇
  2010年   9篇
  2009年   9篇
  2008年   21篇
  2007年   5篇
  2006年   8篇
  2005年   10篇
  2004年   11篇
  2003年   7篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   7篇
  1992年   1篇
  1988年   2篇
  1987年   4篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
1.
Although the feasibility of affinity ultrafiltration was demonstrated more than 20 years ago, commercial applications have not developed due to the high cost and practical limitations of the large macroligands needed for highly selective separations. The objective of this study was to examine the use of small charged affinity ligands for protein purification by exploiting electrostatic interactions between the charged complex and an electrically-charged membrane. Experiments were performed using bovine serum albumin and ovalbumin with Cibacron Blue as the affinity ligand. Negatively charged versions of a composite regenerated cellulose membrane were generated by covalent attachment of a sulfonic acid functionality. Binding experiments were used to identify appropriate conditions for protein separations. The selectivity for the separation of BSA and ovalbumin was a function of the solution conditions, Cibacron Blue concentration, and membrane charge, with the addition of Cibacron Blue causing a 30-fold increase in selectivity. A diafiltration process was performed at the optimal conditions, giving a BSA product with a purification factor of more than 90-fold and a yield greater than 90%. These results clearly demonstrate the potential of using a small charged affinity ligand for high resolution protein separations.  相似文献   
2.
Large sheet asymmetric polyethersulfone (PES) ultrafiltration membranes were prepared via phase inversion process in a continuous conveyor system with addition of PVP to the casting solution. Dimethylacetamide (DMAc) and mixture of water and isopropyl alcohol (70/30 v%) were used as solvent and non‐solvent respectively. The prepared membrane was 0.96 m wide and 3 m long. The pieces of the membrane were selected randomly for characterization in terms of performance using cross flow filtration for milk concentration, image analysis, scanning electron microscopy (SEM), and cleaning procedures. It was found that the prepared membrane has high porosity and high water flux during milk filtration. In addition, cleaning experiments indicated that NaOH/HCl/NaOH sequence is an effective procedure for cleaning the fouled membrane during milk concentration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
3.
The on-line incorporation of cloud point extraction (CPE) to flow injection analysis (FIA) is modified to extract and preconcentrate metal species rapidly, avoiding the formation of hydrophobic complexes, using a mixed micellar medium. Coupling the procedure with chemiluminescence (CL) detection based on the catalytic activity of metal species on the luminol-hydrogen peroxide reaction and enhancing the signal with the presence of a micellar carrier containing bromide ions produces a powerful tool for the preconcentration and determination of metal species at ng l−1 levels. As an analytical demonstration ultratrace concentrations of chromium were conveniently detected and quantified in samples with a complex matrix such as seawater and wastewater. The figures of merit for the determination of chromium were: 0.9-1.6% R.S.D. (n=5) with detection and quantification limits 0.5 and 2.0 ng l−1, respectively. The calibration graph was rectilinear from 2 to 200 ng l−1 (r=0.9996, n=6). Several other metal ions were determined in ideal situations, with analogous results.  相似文献   
4.
Technologies suitable for the separation and reuse of cellulase enzymes during the enzymatic saccharification of pretreated corn stover are investigated to examine the economic and technical viability of processes that promote cellulase reuse while removing inhibitory reaction products such as glucose and cellobiose. The simplest and most suitable separation is a filter with relatively large pores on the order of 20–25 mm that retains residual corn stover solids while passing reaction products such as glucose and cellobiose to form a sugar stream for a variety of end uses. Such a simple separation is effective because cellulase remains bound to the residual solids. Ultrafiltration using 50-kDa polyethersulfone membranes to recover cellulase enzymes in solution was shown not to enhance further the saccharification rate or overall conversion. Instead, it appears that the necessary cellulase enzymes, including β-glucosidase, are tightly bound to the substrate; when fresh corn stover is contacted with highly washed residual solids, without the addition of fresh enzymes, glucose is generated at a high rate. When filtration was applied multiple times, the concentration of inhibitory reaction products such as glucose and cellobiose was reduced from 70 to 10 g/L. However, an enhanced saccharification performance was not observed, most likely because the concentration of the inhibitory products remained too high. Further reduction in the product concentration was not investigated, because it would make the reaction unnecessarily complex and result in a product stream that is much too dilute to be useful. Finally, an economic analysis shows that reuse of cellulase can reduce glucose production costs, especially when the enzyme price is high. The most economic performance is shown to occur when the cellulase enzyme is reused and a small amount of fresh enzyme is added after each separation step to replace lost or deactivated enzyme.  相似文献   
5.
Polymer enhanced ultrafiltration (PEUF) is a newly developed method for the removal of heavy metals from aqueous solutions. This method was applied for the removal of mercury and cadmium with the presence of polyethyleneimine (PEI) as a water soluble polymer. After ultrafiltration experiments for metal–polymer mixtures, two separate streams, namely, retentate and permeate, former of which contains mainly metal–polymer complex and free polymer molecules while latter of which mainly contains free metal ions, were obtained. At the end of PEUF experiments, performance of operation was determined by concentration analyses which was achieved by atomic absorption spectroscopy (AAS) applied in a different way for permeate and retentate streams considering the effect of presence of polymer. For mercury analysis, cold vapor AAS was applied. It was observed that the presence of PEI did not affect the atomic absorption signal when 10% HCl was added to the sample solutions. For calcium and cadmium, flame AAS was used. It was observed that change in PEI concentration results in change in measured concentration of calcium and cadmium. Therefore, two new approaches were developed for accurate measurement of concentrations of calcium and cadmium. It was also observed that presence of other metals did not affect the accuracy of the measurement of a particular metal in the concentration range studied.  相似文献   
6.
Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble “mystery boxes”. Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.  相似文献   
7.
The objective of this study was to characterize the fractionation profile of casein hydrolysates obtained with polysulfone hollow fiber ultrafiltration membranes. The two-step ultrafiltration process developed by Turgeon and Gauthier [J. Food Sci., 55 (1990) 106] was used: a caseinate solution was submitted to proteolysis with chymotrypsin or trypsin, and the reaction mixture (RM) was subsequently ultrafiltered using a 30 kDa (MWCO) hollow-fiber polysulfone membrane. The total hydrolysate permeating from this first step was further fractionated using a 1 kDa (MWCO) membrane, producing the mixture of polypeptides (retentate) and the amino acid fraction (permeate). The effect of enzyme specificity and of membrane retentivitiy on the total composition (total nitrogen, fat, lactose, minerals) and amino acid profile of the fractions was studied. The overall composition of the fractions was not significantly affected by the nature of the enzyme but the degree of hydrolysis and the molecular weight distribution profile analyses showed a marked effect of the enzyme specificity, with trypsin giving a larger proportion of small peptides (< 200 Da) in the mixture of polypeptides. Amino acid profile analyses provided useful information on the phenomena governing the fractionation of amino acids with a polysulfone membrane: (1) the target amino acids of the enzyme are concentrated in the permeate as a result of their presence in all peptides produced by hydrolysis, (2) polar amino acids are retained by the membrane, (3) non-polar amino acids are not selectively rejected by the membrane. Our results suggest that the charge/hydrophobicity balance of the peptides produced is the predominant factor determining the fractionation of casein hydrolysates.  相似文献   
8.
The overall objective of this investigation is to achieve high‐performance membranes with respect to flux and rejection characteristics, with an interplay of blending polymers having desired qualities. Thus, cellulose diacetate and polyethersulfone as candidate materials, in the presence of polyethylene glycol 600 as a pore forming agent, were blended in 100/0, 95/5, 90/10, 85/15, 80,20 and 75/25% compositions using N,N′‐dimethylformamide as solvent and membranes were prepared by the phase inversion technique. Polymer blend composition, additive concentration, and casting and gelation conditions were standardized for the preparation of asymmetric membranes with various pore statistics and morphology. These blend membranes were characterized for compaction in ultrafiltration experiments at 414 kPa pressure in order to attain steady state flux and is reached within 4–5 hr. The pure water flux was measured at 345 kPa pressure and is determined largely by the composition of polyethersulfone and additive concentration. The flux was found to reach the highest values of 66.5 and 275 1/(cm2 hr) at 0 and 10 wt% additive concentrations respectively, at 25% SPS content of the blend. Membrane hydraulic resistance derived by measuring water flux at various transmembrane pressure and by using an algorithm was found to be inversely proportional to pure water flux. Water content is estimated by simple drying and weighing procedures and found proportional to pure water flux for all the membranes. The molecular weight cut‐offs (MWCOs) of different membranes were determined with proteins of different molecular weights and found to vary from 20–69 kDa (globular proteins) depending on the PEG and SPS content in the casting dope. Skin surface porosity of the membranes were analyzed by scanning the frozen membrane samples using scanning electron microscopy (SEM) at different magnifications. The surface porosity is in direct correlation to the MWCO derived from solute retention experiments. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
9.
Reactive black 5 (RB-5) dye was removed from a water stream using two cationic surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC), via micellar enhanced ultrafiltration. Three membranes with different pore size were used for the determination of rejection coefficient and permeate flux of the solution at 1.5 bar trans-membrane pressure (TMP). The two surfactants (CPC and CTAB) played an almost negligible role in rejection efficiency with 5000 and 10,000 molecular weight cut-off membrane (MWCO), respectively. In this case, high rejection and low permeate flux was the result of a larger molecular size of RB-5 DYE being retained by comparatively smaller sized pores of membrane via ultrafiltration. However, CPC and CTAB surfactants showed 83% and 98% rejection coefficient, respectively, at a concentration greater than their CMC values against 30,000 MWCO. Permeate flux remained low and constant in presence of 5000 and 10,000 MWCO with a small variation against 30,000 MWCO for the two surfactants, thereby no appreciable effect on both surfactant concentrations on concentration polarization was estimated. Thus, RB-5 dye alone was determined to be responsible for membrane plugging or concentration polarization and ultimately for low permeate flux. The effect of trans-membrane pressure was also investigated during this study.  相似文献   
10.
Thermal neutron activation analysis, a high-resolution Ge(Li) gamma-ray spectrometer, and an IBM 360/67 digital computer were used to determine the concentration of Na, K, Sc, Cr, Mn, Fe, Co, Cu, Zn, Se, Br, Rb, Sb, Cs, and Hg in ground coffee and tea. This nondestructive multielement technique requires neither pre- nor postirradiation chemistry and eliminates problems of reagent contamination. The method is simple, precise and sensitive to 15 elements. Interferences from fast neutron (n, p) and (n, α) reactions are small and, if necessary, corrections may be applied easily. This technique can be applied to percolated tea and coffee.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号