首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2020年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The understanding of catalyst deactivation represents one of the major challenges for the methanol-to-hydrocarbon (MTH) reaction over acidic zeolites. Here we report the critical role of intermolecular π-interactions in catalyst deactivation in the MTH reaction on zeolites H-SSZ-13 and H-ZSM-5. π-interaction-induced spatial proximities between cyclopentenyl cations and aromatics in the confined channels and/or cages of zeolites are revealed by two-dimensional solid-state NMR spectroscopy. The formation of naphtalene as a precursor to coke species is favored due to the reaction of aromatics with the nearby cyclopentenyl cations and correlates with both acid density and zeolite topology.  相似文献   
2.
Establishing structure–reactivity relationships for specific channel orientations of zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, a well-defined model system was developed to build structure–reactivity relationships for specific zeolite-channel orientations during various catalytic reaction processes, for example, the methanol- and ethanol-to-hydrocarbons (MTH and ETH) process as well as oligomerization reactions. The entrapped and effluent hydrocarbons from single-oriented zeolite ZSM-5 channels during the MTH process were monitored by using operando UV/Vis diffuse reflectance spectroscopy (DRS) and on-line mass spectrometry (MS), respectively. The results reveal that the straight channels favor the formation of internal coke, promoting the aromatic cycle. Furthermore, the sinusoidal channels produce aromatics, (e.g., toluene) that further grow into larger polyaromatics (e.g., graphitic coke) leading to deactivation of the zeolites. This underscores the importance of careful engineering of materials to suppress coke formation and tune product distribution by rational control of the location of zeolite acid sites and crystallographic orientations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号