首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   13篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
排序方式: 共有13条查询结果,搜索用时 284 毫秒
1.
Heteronuclear Group 3 metal/iron carbonyl anion complexes ScFe(CO)3, YFe(CO)3, and LaFe(CO)3 are prepared in the gas phase and studied by mass-selective infrared (IR) photodissociation spectroscopy as well as quantum-chemical calculations. All three anion complexes are characterized to have a metal–metal-bonded C3v equilibrium geometry with all three carbonyl ligands bonded to the iron center and a closed-shell singlet electronic ground state. Bonding analyses reveal that there are multiple bonding interactions between the bare group-3 elements and the Fe(CO)3 fragment. Besides one covalent electron-sharing metal–metal σ bond and two dative π bonds from Fe to the Group 3 metal, there is additional multicenter covalent bonding with the Group 3 atom bonded to Fe and the carbon atoms.  相似文献   
2.
3.
4.
Additions of beryllium–halide bonds in the simple beryllium dihalide adducts, [BeX2(tmeda)] (X=Br or I, tmeda=N,N,N′,N′‐tetramethylethylenediamine), across the metal center of a neutral aluminum(I) heterocycle, [:Al(DipNacnac)] (DipNacnac=[(DipNCMe)2CH]?, Dip=2,6‐diisopropylphenyl), have yielded the first examples of compounds with beryllium–aluminum bonds, [(DipNacnac)(X)Al‐Be(X)(tmeda)]. For sake of comparison, isostructural Mg–Al and Zn–Al analogues of these complexes, viz. [(DipNacnac)(X)Al‐M(X)(tmeda)] (M=Mg or Zn, X=I or Br) have been prepared and structurally characterized. DFT calculations reveal all compounds to have high s‐character metal–metal bonds, the polarity of which is consistent with the electronegativities of the metals involved. Preliminary reactivity studies of [(DipNacnac)(Br)Al‐Be(Br)(tmeda)] are reported.  相似文献   
5.
While double bonds are known for transition metals of Groups 9 and 10 as well as for boron and p‐block elements of Groups 14–16, Zn sits in a small region of the periodic table with no well‐characterized double bonds. A qualitative reasoning indicates that zero‐valent zinc has the potential to form Zn=Zn double bonds. A computational study in search for complexes that might showcase this new bond type is presented here.  相似文献   
6.
The steric bulk of the well‐known DIPPBDI ligand (CH[C(CH3)N‐DIPP]2, DIPP=2,6‐diisopropylphenyl) was increased by replacing isopropyl for isopentyl groups. This very bulky DIPePBDI ligand could not stabilize the radical species (DIPePBDI)Mg.: reduction of (DIPePBDI)MgI with Na gave (DIPePBDI)2Mg2 with a rather long Mg‐Mg bond of 3.0513(8) Å. Addition of TMEDA prior to reduction gave complex (DIPePBDI)2Mg2(C6H6), which could also be obtained as its THF adduct. It is speculated that combination of a bulky spectator ligand and TMEDA prevents dimerization of the intermediate MgI radical, which then reacts with the benzene solvent. Complex (DIPePBDI)2Mg2(C6H6), which formally contains the anti‐aromatic anion C6H62?, reacted with tBuOH as a Brønsted base to 1,3‐ and 1,4‐cyclohexadiene and with H2 as a two electron donor to (DIPePBDI)2Mg2H2 and C6H6. It also reductively cleaved the C?F bond in fluorobenzene and gave (DIPePBDI)MgPh, (DIPePBDI)MgF, and C6H6.  相似文献   
7.
8.
9.
10.
We report the preparation of UFe(CO)3 and OUFe(CO)3 complexes using a laser‐vaporization supersonic ion source in the gas phase. These compounds were mass‐selected and characterized by infrared photodissociation spectroscopy and state‐of‐the‐art quantum chemical studies. There are unprecedented triple bonds between U 6d/5f and Fe 3d orbitals, featuring one covalent σ bond and two Fe‐to‐U dative π bonds in both complexes. The uranium and iron elements are found to exist in unique formal U(I or III) and Fe(−II) oxidation states, respectively. These findings suggest that there may exist a whole family of stable df–d multiple‐bonded f‐element‐transition‐metal compounds that have not been fully recognized to date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号