首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2022年   1篇
  2017年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
This work describes for the first time a stability-indicating HPLC-Corona CAD method for content determination of Artesunate (AS) and Mefloquine hydrochloride (MQ) in coated tablets 100 + 220 mg (ASMQ) developed by Farmanguinhos-Fiocruz. The chromatographic separation was carried out on two Promosil C18 columns in sequence. Chromatography was done using 0.05% formic acid/acetonitrile (80:20) in gradient at flow rate of 1 mL min?1, flow 0.6 mL/min for the right pump, and 0.3 mL/min for the left pump (acetonitrile 100%). The temperature was set at 25 °C for the oven and the detection. The elution time of AS and MQ was found to be 40.5 ± 0.5 min and 10.5 ± 0.5, respectively. The method was validated for system suitability, selectivity, linearity, precision, accuracy, and robustness. The forced degradation studies indicated that AS instability is the major trigger for product degradation, especially under heat and oxidative conditions. In conclusion, the method validation was in agreement with ICH guideline Q2(R1) and AOAC acceptance criteria. Our findings prospected the Corona-CAD detector as a quality control solution regarding the challenges of stability-indicating methods for fixed-dose products.  相似文献   
2.
Two new compounds, bis (DL-erythro-α-2-piperydylium-2,8-bis(trifluoromethyl)-4-quinolinemethanol) tetrachlorocuprate(II) tetrahydrate [LH+]2[CuCl4]2??4H2O 1 [L = mefloquine] and bis(DL-erythro-α-2-piperydylium-2,8-bis(trifluoromethyl)-4-quinolinemethanol) tetrabromocadmate (II) bis(methanol) [LH+]2[CdBr4]2?·2CH3OH 2, have been synthesized and characterized by elemental analysis, 1H-NMR and IR spectroscopy. Single-crystal X-ray diffraction analysis of 1 showed the structure to be ionic with formula unit comprising two protonated monocationic mefloquine molecules of opposite chirality, a tetrachlorocuprate (II) anion and a complement of four water molecules, disordered over several sites. The crystals are orthorhombic, space group Pnma, a = 9.6975(1) Å, b = 29.5385(3) Å, c = 15.9423(1) Å, V = 4566.67(7) Å3, Z = 4. The formula unit of compound 2 comprises two protonated monocationic mefloquine molecules, a tetrabromocadmate(II) anion and two molecules of methanol. The crystals are orthorhombic, space group Fdd2, a = 17.2185(5) Å, b = 55.456(2) Å, c = 9.5140(3) Å, V = 9084.6(5) Å3, Z = 8. The mefloquine molecule is protonated at the piperidinyl N atom and extensive hydrogen bonding occurs in both crystal structures. The conformation of the mefloquine cation in 1 and 2 is very similar to that recently observed in other salts of the drug, confirming its relevance in the context of antimalarial action.  相似文献   
3.
《Electroanalysis》2005,17(17):1563-1570
The electrochemical reduction behavior of mefloquine HCl (MEF), the antimalarial drug, was studied in aqueous alcoholic media at a hanging mercury drop electrode. Cyclic voltammetric studies showed one well‐defined reduction peak and one ill‐defined reduction wave between pH 1.5 and 12.03. The reduction was found as irreversible or quasireversible depending on pH and exhibited diffusion controlled process. The mechanism of reduction process was discussed. A systematic study of the experimental parameters that affect the differential pulse and square wave response was carried out and the optimized experimental conditions were obtained. The calibration plots were derived for the determination of MEF in pharmaceutical dosage forms and biological samples. DPV and SWV techniques for the determination of MEF in Britton–Robinson buffer at pH 11.10, which allows quantitation over the 6×10?6 to 8×10?5 M range in the supporting electrolyte, were proposed. The linear response was obtained in samples in the ranges of 6×10?6 to 6×10?5 M for both techniques. These methods are fully validated. The standard addition method was used in the biological media. No electroactive interferences from the excipients and endogenous substances were found in tablets and biological fluids.  相似文献   
4.
《Electroanalysis》2017,29(9):2138-2146
Mefloquine (MQ) is a quinoline based antimalarial drug, which is potent against multiple drug‐resistant Plasmodium falciparum . It is widely prescribed for the prophylactic treatment of malaria. Due to extensive usage of MQ, constant monitoring of the drug level in human body is of paramount importancein order to ensure that optimum drug exposure is achieved. The present work describes a gold nanourchins (AuNUs) based electrochemical sensor for the determination of MQ.AuNUs were synthesized via seed‐mediated method and characterized using ultraviolet‐visible spectroscopy, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy, zeta‐sizer and electrochemical techniques (electrochemical impedance spectroscopy and cyclic voltammetry). Fabrication of the sensor was done by drop‐coating the synthesized AuNUs onto a glassy carbon electrode. The fabricated sensor exhibited enhanced voltammetric response, which was attributed to the excellent conductivity and high surface area of AuNUs. Under optimum square wave voltammetric conditions, the sensor displayed two linear response ranges (from 2.0×10−9 to 1.0×10−6 M and from 1.0×10−6 to 1.0×10−3 M) with a detection limit of 1.4 nM. The electrode demonstrated good reproducibility, stability and selectivity over common interferents. The utility of the sensor was successfully assessed for quantification of the drug in pharmaceutical preparation and spiked human urine sample. Thus, the present study demonstrates a promising approach for determination of MQ with practical utility in quality control and clinical analysis.  相似文献   
5.
The antimalarial agent mefloquine was investigated using Fourier transform near-infrared (FT NIR) Raman and FT IR spectroscopy. The IR and Raman spectra were calculated with the help of density functional theory (DFT) and a very good agreement with the experimental spectra was achieved. These DFT calculations were applied to unambiguously assign the prominent features in the experimental vibrational spectra. The calculation of the potential energy distribution (PED) and the atomic displacements provide further valuable insight into the molecular vibrations. The most prominent NIR Raman bands at 1,363 cm−1 and 1,434 cm−1 are due to C=C stretching (in the quinoline part of mefloquine) and CH2 wagging vibrations, while the most intense IR peaks at 1,314 cm−1; 1,147 cm−1; and 1,109 cm−1 mainly consist of ring breathings and δCH (quinoline); C–F stretchings; and asymmetric ring breathings, C–O stretching as well as CH2 twisting/rockings located at the piperidine moiety. Since the active agent (mefloquine) is usually present in very low concentrations within the biological samples, UV resonance Raman spectra of physiological solutions of mefloquine were recorded. By employing the detailed non-resonant mode assignment it was also possible to unambiguously identify the resonantly enhanced modes at 1,619 cm−1, 1,603 cm−1 and 1,586 cm−1 in the UV Raman spectra as high symmetric C=C stretching vibrations in the quinoline part of mefloquine. These spectroscopic results are important for the interpretation of upcoming in vitro and in vivo mefloquine target interaction experiments.  相似文献   
6.
Metal Complexes of Biologically Important Ligands. CXXVI. Palladium(II) and Platinum(II) Complexes with the Antimalarial Drug Mefloquine as Ligand The coordination sites of the antimalarial drug mefloquine (L) were studied. Reactions of the chloro bridged complexes (allyl)Pd(μ‐Cl)2Pd(allyl) and (R3P)(Cl)M(μ‐Cl)2M(Cl)(PR3) (M = Pd, Pt) with racemic mefloquine give the compounds (allyl)(Cl)Pd(L) ( 1 ), Cl2(Et3P)Pt(L) ( 2 ) and Cl2(Et3P)Pd(L) ( 3 ) with coordination of the piperidine N atom of mefloquine. In the presence of NaOMe the N,O‐chelate complexes Cl(Et3P)Pt(L–H+) ( 4 ) and Cl(R3P)Pd(L–H+) ( 5 , 6 , R = Et, nBu) were obtained. Protection of the piperidine N atom of mefloquine by protonation allows the synthesis of the complexes Cl2(Et3P)Pt(L + H+) ( 7 ) in which mefloquine is coordinated via the quinoline N atom. The structures of 2 , 3 and 4 were determined by X‐ray diffraction analysis. In the crystal of 4 pairs of enantiomers are found which are linked by two hydrogen bridges between the amine group and the chloro ligand.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号