首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   0篇
化学   72篇
  2020年   7篇
  2019年   11篇
  2018年   3篇
  2017年   9篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   10篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1981年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ 29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+, 3WJ‐pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+, the unfolding forces can differ by more than 4‐fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ‐pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ‐pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy.  相似文献   
7.
8.
9.
We report the unexpected discovery of a tandem active template CuAAC‐rearrangement process, in which N2 is extruded on the way to the 1,2,3‐triazole product to give instead acrylamide rotaxanes. Mechanistic investigations suggest this process is dictated by the mechanical bond, which stabilizes the CuI‐triazolide intermediate of the CuAAC reaction and diverts it down the rearrangement pathway; when no mechanical bond is formed, the CuAAC product is isolated.  相似文献   
10.
The unique optoelectronic properties and smooth, rigid pores of macrocycles with radially oriented π systems render them fascinating candidates for the design of novel mechanically interlocked molecules with new properties. Two high‐yielding strategies are used to prepare nanohoop [2]rotaxanes, which owing to the π‐rich macrocycle are highly emissive. Then, metal coordination, an intrinsic property afforded by the resulting mechanical bond, can lead to molecular shuttling as well as modulate the observed fluorescence in both organic and aqueous conditions. Inspired by these findings, a self‐immolative [2]rotaxane was then designed that self‐destructs in the presence of an analyte, eliciting a strong fluorescent turn‐on response, serving as proof‐of‐concept for a new type of molecular sensing material. More broadly, this work highlights the conceptual advantages of combining compact π‐rich macrocyclic frameworks with mechanical bonds formed via active‐template syntheses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号