首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
化学   6篇
物理学   1篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Potassium-ion battery is rich in resources and cheap in price, in the era of lithium-ion battery commercialization, potassium-ion battery is the most likely to replace it. Based on the classification and summary of electrode materials for potassium-ion batteries, this paper focuses on the introduction of manganese-based oxide KxMnO2. The layered KxMnO2 has a large layer spacing and can be embedded with large size potassium-ions. This paper focuses on the preparation and doping of manganese-based cathode materials for potassium-ion batteries, summarizes the main challenges of KxMnO2-based cathode materials in the current stage of research and further looks into its future development direction.  相似文献   
2.
Three-dimensionally ordered macroporous manganese-based perovskite catalyst (3DOM AMnO3, A = Ce, La, Ni) were synthesized by PMMA hard-templating and impregnation method. Physicochemical properties of the samples were characterized by means of various techniques including XRD, BET, SEM, TEM, XPS and H2-TPR, and their catalytic activities were evaluated by toluene combustion. It was found that the 3DOM AMnO3 in each of the samples was perovskite in crystal structure, and only the samples possessed a good quality 3DOM architecture with a surface area of 48.8 m2/g. Due to the highest adsorbed oxygen species concentration (Oads/Olatt = 2.330), the best low-temperature reducibility (The low-temperature reduction peaks of 3DOM CeMnO3 catalysts occur at 425 °C) and the strong interaction between CeO2 and MnOx formed during calcination. The 3DOM CeMnO3 sample showed lower apparent activation energy (34.51 kJ·mol−1, SV = 15,000 h−1) and the best catalytic activity for toluene combustion, with the reaction temperatures (T50%, and T90%) required for achieving toluene conversions of 50%, and 90% being 100 °C, 172 °C at SV = 15,000 h−1, respectively.  相似文献   
3.
The powder metallurgy technique has been exploited as a means to prepare porous magnetocaloric materials. The alloy Mn1.1Fe0.9P0.46As0.54 was previously synthesized by mechanical alloying followed by a solid-state reaction for crystallization and homogenization. Subsequently, the alloy was comminuted and sintered at 1298 K. The obtained sintered product is aimed to be tested in a magnetic regenerator of a prototype machine.  相似文献   
4.
Manganese-based materials have been attractive candidates for zinc-air batteries in the recent years. This is as a result of their natural abundance, low cost and level of toxicity. However, this review shows that the application still faces some challenges. In our opinion, continual fundamental information on strategies for improving the catalytic activity/performance could promote the commercialization of low cost with relatively high operating voltages profile of manganese-based materials for zinc-air batteries.  相似文献   
5.
Zinc-ion batteries (ZIBs), which use mild aqueous electrolyte, have attracted increasing attention, due to their unique advantages such as low cost, high safety, environmental friendliness, and ease of manufacture. At present, developing a kind of cathode materials with stable structures and large capacities for ZIBs is a hot research topic. Among all ZIBs cathode materials, manganese-based cathode materials have the advantages of low cost, abundant reserves, low toxicity, rich valence states, and high zinc storage capacity, which make them one of the most promising candidates. In recent years, manganese-based composites with different crystal structures have been extensively studied as cathode materials of ZIBs. In this paper, the reaction mechanism of ZIBs cathodes is discussed in detail, and the challenges faced by manganese-based cathode materials and the latest research progress are examined deeply. In addition, a number of optimization strategies aimed at improving the electrochemical performance of the cathode of ZIBs are outlined. Finally, the future prospect of ZIBs is presented.  相似文献   
6.
随着人们对电子通讯器件、新能源汽车以及电网级储能技术的需求日益增长,开发安全、高效且兼具环保、低成本等优点的二次电池显得至关重要。近年来,水系锌离子电池因其高安全性、高容量、低成本以及环境友好等优点受到了广泛关注。在与锌负极相匹配的众多正极材料中,具有多电子转移特性的钒基和锰基材料表现出了广阔的应用前景。然而这些正极材料在电池循环过程通常面临着结构坍塌、组分溶解、衍生副反应、反应动力学缓慢等问题,严重制约了其商业化进程。近年来,大量研究表明,客体离子或分子预嵌正极宿主结构可以有效缓解上述问题,提升水系锌离子电池正极材料的电化学性能。本文综述了客体预嵌策略应用于水系锌离子电池钒、锰基正极材料的研究进展,对该策略所解决的问题以及其局限性进行了讨论和总结,并对未来水系锌离子电池钒基和锰基正极材料的研究发展方向进行了展望。  相似文献   
7.
The P2-type manganese-based Na_(0.7)MnO_2 cathode materials attract great interest due to their high theoretical capacity.However,these materials suffer from rapid capacity fading,poor rate performance and severe voltage decay resulting from phase transition and sluggish reaction kinetics.In this work we report a novel Nb-doped Na_(0.7) [Ni_(0.3)Co_(0.1)Mn_(0.6)]_(1-x)Nb_xO_2 with significantly suppre ssed voltage decay and enhanced cycling stability.The strong Nb-O bond can efficiently stabilize the TMO fra mework,and the as prepared material demonstrates much lower discharge midpoint voltage decay(0.132 V) than that of pristine one(0.319 V) after 200 cycles.Consequently,a remarkably improved cycling perfo rmance with a capacity retention of 87.9% after 200 cycle at 0.5 C is achieved,showing a 2.4 fold improvement as compared to the control sample Na_(0.7)Ni_(0.3)Co_(0.1)Mn_(0.6)O_2(~37% rotation).Even at 2 C,a capacity retention of 68.4% is retained after 500 cycles.Remarkably,the as prepared material can be applied at low temperature of-20℃,showing a capacity retention of 81% as compared to that at room temperature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号