首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2015年   1篇
  2012年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 109 毫秒
1
1.
A novel method was proposed for the preparation of pyrenebutyric acid-modified magnesia-zirconia stationary phases. Pyrenebutyric acid was grafted to magnesia-zirconia composites with different pore sizes via the sodium salt of cis-(3-methyloxiranyl)phosphonic acid (fosfomycin) as spacers. Aminated fosfomycin was first absorbed onto the surface of magnesia-zirconia composites during the preliminary step to provide amino and hydroxy reactive sites. And then the pyrenebutyric acid was covalently attached to the amine or hydroxyl groups via amide or ester bonds. The resulting stationary phases were characterized by elemental analysis, diffused reflectance FT-IR, nitrogen adsorption analysis and 13C solid state NMR spectra. The HPLC separation of fullerenes on the new stationary phases with different pore sizes was also investigated. The chromatographic performance showed a dependence on the pore size of the magnesia-zirconia matrix. Little retention of fullerenes was observed on the stationary phase with pore sizes about 4.5 nm. However, on the modified magnesia-zirconia with pore sizes about 10 nm, selectivity factors (α) for C70/C60 separation were determined to be 1.76, 2.29, 2.41, 3.10, with carbon disulfide, chlorobenzene, xylene and toluene as mobile phases, respectively. And the high solubility of fullerenes in these solvents dramatically increased the overall potential with regard to preparative fullerene purification. Among the reported stationary phases with pyrene ligands, the pyrenebutyric acid-modified magnesia-zirconia (PYB-F-(ZrO2-MgO)) with larger pore sizes exhibited the best selectivity for fullerenes. The thermodynamic and kinetic behavior of fullerenes was also examined.  相似文献   
2.
Three n-octadecylphosphonic acid-modified magnesia-zirconia reversed stationary phases (C18PZM) are prepared via the strong Lewis base interactions between organophosphonate and magnesia-zirconia composite. And two of them are end-capped by using trimethylchlorosilane as end-capping agent in different procedures. Stability studies at extreme high pH conditions (pH 9-12) show that both the non-endcapped and endcapped columns are quite stable at pH 12 mobile phase. The reversed-phase liquid chromatographic behavior of three C18PZM stationary phases are comparatively investigated in detail using a variety of basic compounds as probes. The retention of basic compounds on the three phases is studied over a wide range of pHs. And the possible retention mechanisms of basic compounds on the three stationary phases are discussed. The results show that the basic solutes retain by a hydrophobic and cation-exchange interaction mixed mechanism on three stationary phases when they are operated in eluents at pH values near to the pKa of the Brönsted conjugate acid form of the analyte, suggesting that inherent zirconol groups on ZM are not expected to interact with bases via cation-exchange interaction at lower pH. Nonetheless, the non-endcapped phase differs markedly from the edncapped ones in retention and selectivity of basic solutes using eluents at pH 4.1, implying a complex retention mechanism at this pH. The cation-exchange sites under such conditions are more likely due to the adsorbed Lewis base anionic buffer constituents (acetate) on accessible ZM surface sites than the chemisorbed phosphonate. Although the three phases exhibit very similar chromatographic behavior with eluents at pH 10.1, and show in general satisfactory separation of basic compounds and alkaloids studied, the performance for a specific analyte, however, differs largely from column to column.  相似文献   
3.
A hydrophilic stationary phase (SP) was prepared through grafting N-methylene phosphonic acid chitosan on magnesia–zirconia particles (P-CTS-MgO–ZrO2) via Lewis acid–base interaction. The resulting material was characterized by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscope and nitrogen adsorption analysis. The chromatographic performance of P-CTS-MgO–ZrO2 was systemically evaluated by studying effect of acetonitrile content, pH and buffer concentration in the mobile phase. The results demonstrated that the novel SP provided hydrophilic, electrostatic-repulsion and ion-exchange interactions. Compared to the bare MgO–ZrO2, P-CTS-MgO–ZrO2 exhibited superior peak shape, reasonable resolution and reduced analysis time in separation of basic analytes. Besides, remarkable resolving power of acids, i.e. six non-steroidal anti-inflammatory drugs which failed to be eluted from the bare MgO–ZrO2, was obtained with the theoretical plate number (N/m) of 4653–31313, asymmetry factor <1.21 and the resolution of 1.6–3.4. Finally, P-CTS-MgO–ZrO2 SP was applied to separate monosaccharides, phospholipids and peptides. P-CTS-MgO–ZrO2 was a promising hydrophilic SP for wide applications.  相似文献   
4.
《Analytical letters》2012,45(14):2761-2774
ABSTRACT

The high-performance liquid chromatographic behavior of some bases and nucleosides was studied on a new reversed-phase stationary phase, alkylphosphonate-modified magnesia-zirconia. The effect of mobile phase variable such as methanol content, ionic strength and pH on their behavior was investigated. It was found that the retention behavior of the bases and nucleosides on the new stationary phase is similar to that on ODS stationary phase. The retention mechanism on the new stationary phase was also discussed. The separation of some bases and nucleosides was accomplished on the new stationary phase.  相似文献   
5.
A new stationary phase of magnesia-zirconia composite matrix for high-performance liquid chromatography was first prepared by modification of β-cyclodextrin (β-CD) via fosfomycin as a spacer. Various modification procedures were attempted for achievement of successful modification. The modified composite was characterized by using coloration, elemental analysis, diffused reflectance FT-IR, surface area and pore size distribution. The separation of alkylbenzenes, polycyclic aromatic hydrocarbons, positional isomers of some acidic, basic and amphoteric disubstituted benzenes was studied on the new stationary phase. The effect of pH and methanol content in the mobile phase on retention and separation selectivity for the positional isomers were investigated. The chromatographic performance of CD modified magnesia-zirconia was compared with fosfomycin modified magnesia-zirconia as intermediate material and bare magnesia-zirconia as raw material. The results show that various retention mechanisms such as hydrophobicity, inclusion complexation and hydrogen bond interaction exist in the chromatography process of the packing modified with CD. The β-CD played the major role in the chromatographic property of this new stationary phase. The modified magnesia-zirconia exhibits superiority of separation for basic aromatics and high stability above pH 11.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号