首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   12篇
  国内免费   23篇
化学   221篇
晶体学   1篇
力学   2篇
数学   1篇
物理学   23篇
  2024年   4篇
  2023年   31篇
  2022年   28篇
  2021年   36篇
  2020年   35篇
  2019年   42篇
  2018年   15篇
  2017年   10篇
  2016年   11篇
  2015年   4篇
  2014年   6篇
  2013年   2篇
  2012年   10篇
  2010年   2篇
  2009年   7篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  1983年   1篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
1.
ABSTRACT

Drug delivery using metal-organic frameworks (MOF) has elicited interest in their biocompatibility; however, few studies have been conducted on their stability in common buffers, cell media, and blood proteins. In particular, the use of ZIF-8, a MOF interconnected by Zn and methylimidazole, has been frequently employed. In this study, we tested single crystals of ZIF-8 with common laboratory buffers, cell media, and serum, and noted several issues. Buffers containing phosphate and bicarbonate alter the appearance and composition of ZIF-8; however, these buffers do not appear to cause cargo to leak out even when the ZIF-8 itself is displaced by phosphates. On the other hand, serum dissolves ZIF-8, causing premature cargo release. Our results show that ZIF-8 undergoes surface chemistry changes that may affect the interpretation of cellular uptake and cargo release data. On the other hand, it provides a rational explanation as to how ZIF-8 neatly dissolves in vivo.  相似文献   
2.
Many studies have focused on effective ways to exploit enzyme immobilization on an electrode surface to help improve the performance of enzymatic electrochemical biosensors. Herein, a novel glucose sensor was fabricated by immobilizing glucose oxidase (GOx) onruthenium-based conjugated polymer (CP) and metal-organic framework (MOF) nanocomposites. This has not only reduced the applied potential to 0.2 V (vs. Ag/AgCl), but also improved the effective surface area for enzyme immobilization.PPG@Ru@UiO-66-NH2 was tailored by controlled chemical synthesis from a pre-synthesized water-soluble conjugated polymer (poly(N-phenylglycine)) and metal-organic framework (UiO-66-NH2). The resulting nanocomposites were characterized using Fourier transform infrared spectroscopy, X-ray fluorescence, scanning electron microscopy, and cyclic voltammetry. The PPG@Ru@UiO-66-NH2/GOx coated electrodedisplayed a linear measurementrange for glucose from 1 mM to 10 mM, with a sensitivity of 45.92 μA ⋅ mM−1cm−1 and limit of detection of5 μM( ). Furthermore, the practical application of the fabricatedglucosesensor was tested in simulative blood samples with satisfactoryaccuracy. This approach alsoopens a new door for applications regarding both enzymatic electrochemical biosensors and enzymatic biofuel cells (EBFCs).  相似文献   
3.
A new nano scale Cu‐MOF has been obtained via post‐synthetic metalation by immersing a Zn‐MOF as a template in DMF solutions of copper(II) salts. The Cu‐MOF serves as recyclable nano‐catalyst for the preparation of 5‐substituted 1H‐tetrazoles via [3 + 2] cycloaddition reaction of various nitriles and sodium azide in a green medium (PEG). The post‐synthetic metalated MOF were characterized by FT‐IR spectroscopy, powder X‐ray diffraction (PXRD), atomic absorption spectroscopy (AAS), and energy dispersive X‐ray spectroscopy (EDX) techniques. The morphology and size of the nano‐catalyst were determined by field emission scanning electron microscopy (FE‐SEM).  相似文献   
4.
Reducing gas contaminants by affordable and effective adsorbents is a major challenge in the 21st century. In the present study, thorium metal organic framework (Th‐MOF) nanostructures are introduced as highly efficient adsorbents. These compounds were manufactured via a novel route resulting from the development of microwave assisted reverse micelle (MARM) and ultrasound assisted reverse micelle (UARM) methods. The products were characterized utilizing XRD, SEM, TGA/DSC, BET, and FT‐IR analyses. Based on the results, the samples synthesized by MARM had uniform size distribution, high thermal stability, and significant surface area. Calculations using DFT/B3LYP indicated that the compounds have a tendency to the polymeric form, which could theoretically confirm the formation of Th‐MOF. Results of analysis of variance (ANOVA) showed that synthesis parameters played a critical role in the manufacturing of products with distinctive properties. Response surface methodology (RSM) predicted the possibility of creating Th‐MOF adsorbents with the surface area of 2579 m2/g, which was a considerable value in comparison with the properties of other adsorbents. Adsorption studies showed that, in the optimum conditions, the Th‐MOF products had high adsorption capacity for CO and CH4. It is believed that the synthesis protocol developed in the present study and the systematic studies conducted on the samples which lead to products with ideal adsorption properties.  相似文献   
5.
Cu‐doped Ni‐based metal–organic frameworks (MOFs) nanomaterials fabricated through a one‐pot hydrothermal reaction were characterized, and their performance as supercapacitor electrode materials was further studied for the first time. The results indicated that the doping of foreign metals and the introduction of K3[Fe(CN)6] in the KOH electrolyte significantly improve the performance of the supercapacitor. The results indicated that the Ni2.6Cu0.4 MOFs material shows the highest specific capacitance (1282 F g?1 at 1 A g?1 in mixed 2 M KOH and 0.1 M K3[Fe(CN)6]) and optimal capacitance retention (85.7% after 2000 cycles). This work provides a feasible optimization strategy for the construction of MOFs‐based supercapacitor electrode materials with excellent performance, and also provides a reliable experimental and theoretical basis for practical industrial production.  相似文献   
6.
2D metal-organic framework (MOF) has potential applications in electrocatalysis owing to fast mass transfer, charge transfer and large specific surface area. Here, we had prepared three conductive 2D MOF based on Ni, NiCo and Co in a simple and rapid way. The 2D nanostructure of MOF was confirmed by SEM and TEM. The chemical composition was studied by XRD, Raman and XPS spectrum. The electrochemical oxidation and detection was investigated through cyclic voltammetry and current-time method. Their sensing performance for urea was determined by varying oxidation potentials and metal sites. The non-enzymatic Ni-, NiCo- and Co-MOF sensors had good catalytic activity for urea. Compared with NiCo- and Co-MOF, Ni-MOF had a wider linear range (0.5–832.5 μM), high sensitivity (1960 μA mM−1 cm−2), low detection limit (0.471 μM), and fast response time. The sensors had well repeatability, reproducibility, and selectivity to specific interfering species. Furthermore, Ni- and NiCo-MOF modified electrode was also applied to detection of milk samples. The results showed that the recovery was satisfactory, which further confirmed the effectiveness of non-enzyme sensor. In general, the highly-sensitive 2D Ni- and NiCo-MOF modified electrode has great potential as nonenzymatic urea sensors for real samples detection in hydrogen energy, clinical diagnostics, and environmental protection, et al.  相似文献   
7.
Via utilizing the mixed‐ligand method, two novel Zn(II)‐containing meta‐organic frameworks with the chemical formula of {[Zn(L)(5‐HIP)]·H2O}n ( 1 ) and [Zn(L)(2,6‐NDC)]n ( 2 ) were prepared under the solvothermal conditions by applying aromatic dicarboxylic acids ligands (5‐H2HIP = 5‐hydroxyisophthalic acid; 2,6‐H2NDC = 2,6‐naphthalenedicarboxylic acid) and 1,4‐bis(benzimidazol‐1‐yl)‐2‐butylene (L). Due to its good water stability as well as the strong luminescent emission around room temperature, complex 2 has the high selectivity and sensibility of fluorescence detection to the ceftriaxone sodium (a kind of antibiotic) with the detection limit up to ppm lever. The treatment activity of the compounds on age‐related macular degeneration was assessed and the specific mechanism was investigated. First of all, the inflammasome activation in the endothelial cells of retina was evaluated with western blot. In addition to this, the down‐stream production of the inflammasome activation was also measured with ELISA detection kit.  相似文献   
8.
To investigate the coordination chemistry of modbc (2-methyl-6-oxygen-1,6-dihydro-3,4'-bipyridine-5-carbonitrile) with ZnII and CdII salts under the solvothermal conditions, six new MOFs with the formulas [Zn(modbc)2(mpa)]n ( 1 ), [Zn(modbc)(mpa)(H2O)]n ( 2 ), [Zn(modbc)(pa)0.5(H2O)]n ( 3 ), [Cd(modbc)(pa)0.5(H2O)]n ( 4 ), [Zn(modbc)2(tpa)]n ( 5 ), and [Cd(modbc)2(pda)(H2O)]n ( 6 ) (mpa = m-phthalic acid; pa = pyromellitic acid; tpa = terephthalic acid; pda = pentane diacid) were successfully synthesized by solvothermal reaction and fully characterized by elemental analysis, IR spectroscopy, single crystal, powder X-ray diffraction, thermal and photoluminescence properties. Though MOFs 3 and 4 have the same structure, we have obtained three different kinds of coordination configurations by the X-ray diffration analysis. Compared with 1 and 2 , coordination water has no effect on the solid fluorescence emission of MOFs. It is worth noting that the fluorescence intensity of 3 containing central ZnII atoms is very strong, whereas that of isomorphism 4 containing central CdII atoms has almost no fluorescence emission, showing that metal ions have very important influence on the fluorescence emission. Further, we found that solvents had an important effect on the fluorescence emission in liquid fluorescence of MOFs 1 – 6 .  相似文献   
9.
分子筛和金属有机骨架(MOF)材料以其独特的孔道和骨架结构在催化、 储能、 干燥及净化和吸附分离等领域有着广泛应用, 对其结构的原子尺度表征对于深入理解其构效关系具有重要意义. 但其大孔道结构和有机骨架使得它们对电子束辐照极为敏感, 在常规透射电镜成像模式下结构会很快被破坏变为非晶, 从而无法获得孔道和骨架的原子排列信息. 最近发展起来的基于积分差分相位衬度扫描透射电子显微(iDPC-STEM)技术在电子敏感材料和轻元素组分成像方面展现出明显优势, 使得对多孔骨架材料及烃池物种的表征成为了可能. 本文综述了本课题组近期利用该技术对分子筛和MOF材料原子尺度结构方面的研究. 将iDPC-STEM技术应用到ZSM-5分子筛催化剂中, 实现了对该分子筛的原子级骨架结构的成像分析. 在MOF体系中, 利用该技术观察到MIL-101骨架内部有机连接体与金属节点的配位方式, 在此基础上解析了MIL-101结构中有机配体的连接和金属节点的苯环结构, 并观察了MOF的原子级表面、 界面和缺陷等局域结构特征. 最后对iDPC-STEM技术在原子尺度成像方面的应用潜力进行了总结与展望.  相似文献   
10.
Graphitic carbon nitride quantum dots (g-CNQDs) are highly promising photoresponsive materials. However, synthesis of monodispersed g-CNQDs remains challenging. Here we report the dual function of MOF [Cu3BTC2] (HKUST-1) as a catalyst and template simultaneously to prepare g-CNQDs under mild conditions. Cyanamide (CA), a graphitic carbon nitride precursor, catalytically dimerized inside the larger MOF cavities at 90 °C and condensed into g-CNQDs at 120 °C in a controlled fashion. The HKUST-1 template was stable under the reaction conditions, leading to uniform g-CNQDs with a particle size of 2.22±0.68 nm. The as prepared g-CNQDs showed photoluminescence emission with a quantum yield of 3.1 %. This concept (MOF dual functionality) for catalyzing CA polycondensation (open metal sites (OMSs) effect) and controlling the produced particle size (pore-templating effect), together with the tunable MOF porosity, is expected to produce unique g-CNQDs with controllable size, morphology, and surface functionality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号