首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
化学   15篇
物理学   1篇
  2022年   5篇
  2020年   1篇
  2019年   4篇
  2017年   1篇
  2013年   2篇
  2010年   1篇
  2009年   2篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
扈国栋  张少龙  张庆刚 《化学学报》2009,67(9):1019-1025
FKBP12 (FK506-binding protein-12)是一种具有神经保护和促神经再生作用的蛋白. 采用分子动力学模拟取样, 运用MM-GBSA方法计算了FKBP12和3个抑制剂(GPI-1046, 308和107)的绝对结合自由能, GPI-1046的结合能最小, 308小于107的结合能. 通过能量分解的方法考察了FKBP12蛋白的主要残基与抑制剂之间的相互作用和识别, 计算结果表明: 3个抑制剂具有相似的结合模式, Ile56和Tyr82主要表现为氢键作用, Tyr26, Phe46, Val55, Ile56, Trp59, Tyr82, Tyr87和Phe99形成疏水作用区. 计算结果和实验结果吻合.  相似文献   
2.
The present study aimed to identify the prospective inhibitors of MurD, a cytoplasmic enzyme that catalyzes the addition of d-glutamate to the UDP-N-acetylmuramoyl-l-alanine nucleotide precursor in Mycobacterium tuberculosis (MTB), using virtual screening, docking studies, pharmacokinetic analysis, Molecular Dynamic (MD) simulation, and Molecular Mechanics Generalized Born and Surface Area (MM-GBSA) analyses. The three dimensional (3D) structure was determined based on the homology technique using a template from Streptococcus agalactiae. The modeled structure had three binding sites, namely; substrate binding site (Val18, Thr19, Asp39, Asp40, Gly75, Asn147, Gln171 and His192), the ATP binding site (Gly123, Lys124, Thr125, Thr126, Glu166, Asp283, and Arg314) and the glutamic acid binding site (Arg382, Ser463, and Tyr470). These residues mentioned above play a critical role in the catalytic activity of the enzyme, and their inhibition could serve as a stumbling block to the normal function of the enzyme. A total of 10,344 obtained from virtual screened of Zinc and PubChem databases. These compounds further screened for Lipinski rule of five, docking studies and pharmacokinetic analysis. Four compounds with good binding energies (ZINC11881196 = −10.33 kcal/mol, ZINC12247644 = −8.90 kcal/mol, ZINC14995379 =−8.42 kcal/mol, and PubChem6185 = −8.20 kcal/mol), better than the binding energies of the ATP (−2.31 kcal/mol) and the ligand with known IC50, Aminothiazole (−7.11 kcal/mol) were selected for the MD simulation and MM-GBSA analyses. The result of the analyses showed that all the four ligands formed a stable complex and had the binding free energies better than the binding energy of ATP. Therefore, these ligands considered as suitable prospective inhibitors of the MurD after experimental validation.  相似文献   
3.
γ-tubulin plays crucial role in the nucleation and organization of microtubules during cell division. Recent studies have also indicated its role in the regulation of microtubule dynamics at the plus end of the microtubules. Moreover, γ-tubulin has been found to be over-expressed in many cancer types, such as carcinomas of the breast and glioblastoma multiforme. These studies have led to immense interest in the identification of chemical leads that might interact with γ-tubulin and disrupt its function in order to explore γ-tubulin as potential chemotherapeutic target. Recently a colchicine-interacting cavity was identified at the interface of γ-tubulin dimer that might also interact with other similar compounds. In the same direction we theoretically investigated binding of a class of compounds, noscapinoids (noscapine and its derivatives) at the interface of the γ-tubulin dimer. Molecular interaction of noscapine and two of its derivatives, amino-noscapine and bromo-noscapine, was investigated by molecular docking, molecular dynamics simulation and binding free energy calculation. All noscapinoids displayed stable interaction throughout simulation of 25 ns. The predictive binding free energy (ΔGbind) indicates that noscapinoids bind strongly with the γ-tubulin dimer. However, bromo-noscapine showed the best binding affinity (ΔGbind = –37.6 kcal/mol) followed by noscapine (ΔGbind = –29.85 kcal/mol) and amino-noscapine (ΔGbind = –23.99 kcal/mol) using the MM-PBSA method. Similarly using the MM-GBSA method, bromo-noscapine showed highest binding affinity (ΔGbind = –43.64 kcal/mol) followed by amino-noscapine (ΔGbind = –37.56 kcal/mol) and noscapine (ΔGbind = –34.57 kcal/mol). The results thus generate compelling evidence that these noscapinoids may hold great potential for preclinical and clinical evaluation.  相似文献   
4.
DNA gyrase subunit B (GyrB) is an attractive drug target for the development of antibacterial agents with therapeutic potential. In the present study, computational studies based on pharmacophore modelling, atom-based QSAR, molecular docking, free binding energy calculation and dynamics simulation were performed on a series of pyridine-3-carboxamide-6-yl-urea derivatives. A pharmacophore model using 49 molecules revealed structural and chemical features necessary for these molecules to inhibit GyrB. The best fitted model AADDR.13 was generated with a coefficient of determination (r²) of 0.918. This model was validated using test set molecules and had a good r² of 0.78. 3D contour maps generated by the 3D atom-based QSAR revealed the key structural features responsible for the GyrB inhibitory activity. Extra precision molecular docking showed hydrogen bond interactions with key amino acid residues of ATP-binding pocket, important for inhibitor binding. Further, binding free energy was calculated by the MM-GBSA rescoring approach to validate the binding affinity. A 10 ns MD simulation of inhibitor #47 showed the stability of the predicted binding conformations. We identified 10 virtual hits by in silico high-throughput screening. A few new molecules were also designed as potent GyrB inhibitors. The information obtained from these methodologies may be helpful to design novel inhibitors of GyrB.  相似文献   
5.
Keratoconus (KC) is a serious disease that can affect people of any race or nationality, although the exact etiology and pathogenic mechanism are still unknown. In this study, thirty-two FDA-approved ophthalmic drugs were exposed to virtual screening using docking studies against both the MMP-2 and MMP-9 proteins to find the most promising inhibitors as a proposed computational mechanism to treat keratoconus. Matrix metalloproteinases (MMPs) are zinc-dependent proteases, and MMP inhibitors (MMPIs) are usually designed to interact with zinc ion in the catalytic (CAT) domain, thus interfering with enzymatic activity. In our research work, the FDA-approved ophthalmic medications will be investigated as MMPIs, to explore if they can be repurposed for KC treatment. The obtained findings of the docking study suggest that atenolol and ampicillin are able to accommodate into the active sites of MMP-2 and MMP-9. Additionally, both exhibited binding modes similar to inhibitors used as references, with an ability to bind to the zinc of the CAT. Molecular dynamic simulations and the MM-GBSA binding free-energy calculations revealed their stable binding over the course of 50 ns. An additional pharmacophoric study was carried out on MMP-9 (PDB ID: 1GKC) using the co-crystallized ligand as a reference for the future design and screening of the MMP-9 inhibitors. These promising results open the door to further biological research to confirm such theoretical results.  相似文献   
6.
Inhibition of the p53–MDM2 interaction is a new therapeutic strategy to activate the wild-type function of p53 in tumors. Molecular dynamics (MD) simulations and calculations of binding free energies were performed to investigate the binding mechanisms of p53 and two inhibitors PMI and VZV to MDM2. The results show that van der Waals interaction is the main force to control the bindings of ligands to the hydrophobic cleft of MDM2, which basically agrees with the previous calculated and experimental studies. The results from the RMSF calculation, cross-correlation analysis and principal component (PC) analysis prove that the ligand bindings produce a significant effect on the conformation of the binding cleft of MDM2. In addition, the calculations of residue-based free energy decomposition suggest that the CH–CH, CH–π, and π–π interactions dominate the bindings of p53 and inhibitors to MDM2. This study can provide significant help for the design of potent inhibitors targeting the p53–MDM2 interaction.  相似文献   
7.
Upregulation of store-operated Ca2+ influx via ORAI1, an integral component of the CRAC channel, is responsible for abnormal cytokine release in active rheumatoid arthritis, and therefore ORAI1 has been proposed as an attractive molecular target. In this study, we attempted to predict the mechanical insights of ORAI1 inhibitors through pharmacophore modelling, 3D-QSAR, molecular docking and free energy analysis. Various hypotheses of pharmacophores were generated and from that, a pharmacophore hypothesis with two hydrogen bond acceptors, one hydrogen bond donor and two aromatic rings (AADRR) resulted in a statistically significant 3D-QSAR model (r2 = 0.84 and q2 = 0.74). We believe that the obtained statistical model is a reliable QSAR model for the diverse dataset of inhibitors against the IL-2 production assay. The visualization of contours in active and inactive compounds generated from the 3D-QSAR models and molecular docking studies revealed major interaction with GLN108, HIS113 and ASP114, and interestingly, these residues are located near the Ca2+ selectivity filter region. Free energy binding analysis revealed that Coulomb energy, van der Waals energy and non-polar solvation terms are more favourable for ligand binding. Thus, the present study provides the physical and chemical requirements for the development of novel ORAI1 inhibitors with improved biological activity.  相似文献   
8.
Bromodomain and extra-terminal domain (BET) subfamily is the most studied subfamily of bromodomain-containing proteins (BCPs) family which can modulate acetylation signal transduction and produce diverse physiological functions. Thus, the BET family can be treated as an alternative strategy for targeting androgen-receptor (AR)-driven cancers. In order to explore the effect of inhibitors binding to BRD4 (the most studied member of BET family), four 150 ns molecular dynamic simulations were performed (free BRD4, Cpd4-BRD4, Cpd9-BRD4 and Cpd19-BRD4). Docking studies showed that Cpd9 and Cpd19 were located at the active pocket, as well as Cpd4. Molecular dynamics (MD) simulations indicated that only Cpd19 binding to BRD4 can induce residue Trp81-Ala89 partly become α-helix during MD simulations. MM-GBSA calculations suggested that Cpd19 had the best binding effect with BRD4 followed by Cpd4 and Cpd9. Computational alanine scanning results indicated that mutations in Phe83 made the greatest effects in Cpd9-BRD4 and Cpd19-BRD4 complexes, showing that Phe83 may play crucial roles in Cpd9 and Cpd19 binding to BRD4. Our results can provide some useful clues for further BCPs family search.  相似文献   
9.
The persistency of COVID-19 in the world and the continuous rise of its variants demand new treatments to complement vaccines. Computational chemistry can assist in the identification of moieties able to lead to new drugs to fight the disease. Fullerenes and carbon nanomaterials can interact with proteins and are considered promising antiviral agents. Here, we propose the possibility to repurpose fullerenes to clog the active site of the SARS-CoV-2 protease, Mpro. Through the use of docking, molecular dynamics, and energy decomposition techniques, it is shown that C60 has a substantial binding energy to the main protease of the SARS-CoV-2 virus, Mpro, higher than masitinib, a known inhibitor of the protein. Furthermore, we suggest the use of C70 as an innovative scaffold for the inhibition of SARS-CoV-2 Mpro. At odds with masitinib, both C60 and C70 interact more strongly with SARS-CoV-2 Mpro when different protonation states of the catalytic dyad are considered. The binding of fullerenes to Mpro is due to shape complementarity, i.e., vdW interactions, and is aspecific. As such, it is not sensitive to mutations that can eliminate or invert the charges of the amino acids composing the binding pocket. Fullerenic cages should therefore be more effective against the SARS-CoV-2 virus than the available inhibitors such as masinitib, where the electrostatic term plays a crucial role in the binding.  相似文献   
10.
Compounds derived from plants have several anticancer properties. In the current study, one guaiane-type sesquiterpene dimer, vieloplain F, isolated from Xylopia vielana species, was tested against B-Raf kinase protein (PDB: 3OG7), a potent target for melanoma. A comprehensive in silico analysis was conducted in this research to understand the pharmacological properties of a compound encompassing absorption, distribution, metabolism, excretion, and toxicity (ADMET), bioactivity score predictions, and molecular docking. During ADMET estimations, the FDA-approved medicine vemurafenib was hepatotoxic, cytochrome-inhibiting, and non-cardiotoxic compared to the vieloplain F. The bioactivity scores of vieloplain F were active for nuclear receptor ligand and enzyme inhibitor. During molecular docking experiments, the compound vieloplain F has displayed a higher binding potential with −11.8 kcal/mol energy than control vemurafenib −10.2 kcal/mol. It was shown that intermolecular interaction with the B-Raf complex and the enzyme’s active gorge through hydrogen bonding and hydrophobic contacts was very accurate for the compound vieloplain F, which was then examined for MD simulations. In addition, simulations using MM-GBSA showed that vieloplain F had the greatest propensity to bind to active site residues. The vieloplain F has predominantly represented a more robust profile compared to control vemurafenib, and these results opened the road for vieloplain F for its utilization as a plausible anti-melanoma agent and anticancer drug in the next era.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号