首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   2篇
  国内免费   3篇
化学   51篇
物理学   10篇
  2019年   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1997年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
CS[Er6C]I12 and cs2Lu[Lu6C]CI18: Examples for Quaternary Reduced Halides of the Lanthanides with Isolated “Clusters” Cs[Er6C]I12 and Cs2Lu[Lu6C]Cl18 were obtained as byproducts through metallothermic reductions of ErI3 and LuCl, with cesium in the presence of carbon in sealed tantalum containers at temperatures ranging from 700 to 940 °C. Cs2Lu[Lu6C]Cl18 (isostructural with Cs2Zr[Zr6H]Cl18, R 3 , a = 981.7 pm, c = 2723.2 pm, Z = 3, R = 0.082, R, = 0.053) contains octahedral [Lu6C] clusters which are slightly compressed along the threefold axis and edge-bridged by twelve chloride anions to form [Lu6C]Cl12 units. Six additional Cl in exo positions of the cluster provide octahedral coordination for the seventh Lu3+. Cs+ occupies anticuboctahedral interstices within the Cl+ layers as a part of the (hexagonal) closest packed arrangement. Cs[Er6C]I12 (trigonal, R 3, a = 1112.0pm, c = 2063.8pm, Z = 3, R = 0.094, R, = 0.068) exhibits [Er6C]I12 units as well and shows the structural framework of Sc[Sc6N]Cl12. Instead of Sc3+ in octahedral holes, cesium occupies a regular iodide position within the ccp sheets forming [CsI3] layers. Both halides are compared with other compounds of the lanthanides containing isolated [M6X12] clusters. The extreme electron deficiency is discussed.  相似文献   
2.
The photophysical and photochemical properties of tetraaminophthalocyanine complexes of lutetium and zinc covalently linked to polyacrylic acid were studied alongside those of unsubstituted zinc phthalocyanine within the same polymeric fiber matrix. All three phthalocyanines within the solid fiber matrices showed photoactivity by the generation of singlet oxygen as was observed in solution. The fluorescence behaviors of the composite fibers equally parallel those in solution. For the unsubstituted zinc phthalocyanine composite, the fiber showed fluorescence quenching on interaction with gaseous nitrogen dioxide similar to that in DMF and, thus could be a promising nanofabric material in developing optoelectronic devices that are responsive to the gas.  相似文献   
3.
镥的激光共振电离同位素选择性研究   总被引:3,自引:3,他引:3       下载免费PDF全文
本文在速率方程基础上通过数值模拟方法 ,对镥的激光共振电离通道 :5d6s2 2 D3 /2 (5 73.6 5 5nm)→5d6s6 p4F3 /2 (6 4 2 .5 18nm)→ 6s6 p2 4P1/2 (6 4 3.5 4 8nm)→Autoionizationstate的激光诱导同位素选择性进行了研究。在实际实验条件下用这一方法计算得到的激光波长对激光诱导同位素选择性的关系与实验结果相符合。探讨了在偏振激光作用的情况下各种激光参数 (波长、带宽和激光强度 )对激光诱导同位素选择性的影响 ,并提出了在一定实验条件下激光共振电离质谱计较为准确地测定同位素比值的方法。这一理论方法 ,同样适用于研究其它元素的激光共振电离同位素选择性和选择激光同位素分离电离通道  相似文献   
4.
Complexes of etifenin ( 1a ), disofenin ( 1b ), and mebrofenin ( 1c ) with GaIII, YIII, and LuIII were synthesized and characterized by NMR spectroscopy and UV/Vis spectroscopy. Stability and protonation constants of the complexes of 1a were determined by potentiometry and distribution diagrams were calculated. It was shown that the YIII and LuIII species are most stable as bis chelates at higher pH, whereas the GaIII complex degrades at pH < 4.5.  相似文献   
5.
本文采用低温冷离子阱囚禁的手段累积镥的负离子束流,使得对其电子亲和势的测量变得实际可行.运用慢电子速度成像法获得具有高分辨率的镥负离子的光电子能谱,测得镥的电子亲和势为1926.2(50) cm~(-1)或0.23882(62) eV.此外,还观察到镥负离子的两个激发态.  相似文献   
6.
Black single crystals of [Lu(Db18c6)(H2O)3(thf)6]4(I3)2(I5)6(I8)(I12) were obtained from lutetium, I2 and Db18c6 (dibenzo‐18‐crown‐6) in THF solution. In the bulky cation, Lu3+ is surrounded by nine oxygen atoms, six of Db18c6 and three of water molecules to which two THF molecules are attached each. Meanwhile, four polyiodide anions, (I3), (I5), (I8)2– and (I12)2–, in a 2:6:1:1 ratio form a three‐dimensional network and leave space for the bulky cations.  相似文献   
7.
Powder samples of the ternary phosphates A3Lu(PO4)2:Yb3+ (A = Na, Rb) have been synthesised by solid state reactions. The spectroscopic properties of Yb3+ in double phosphate host lattices were investigated using absorption, emission and excitation spectra at 4, 10 and 293 K in the VUV to IR range. The results obtained for both types of phosphates are compared. Together with the fundamental 2F5/22F7/2 emission in the IR range, a broad band emission with two peaks in the UV region were observed in Yb3+‐activated Na3Lu(PO4)2. The second emission is due to a charge–transfer transition type. The influence of the alkali metal cation site of the host lattice on the luminescence properties was investigated. The tentative energy level scheme of the ground and excited 2FJ (J=7/2, 5/2) levels is described.  相似文献   
8.
The stepwise reaction of Me2SiCl2 with K[C5H3 tBuMe‐3] or Li[C9H7] and then with K[C9H6CH2CH2‐ NMe2‐1] followed by double deprotonation with NaH or LiBu, yields the two dimethylsilicon bridged cyclopentadienyl‐indenyl and indenyl‐indenyl donor‐functionalized ligand systems K2[(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 1 ), and Li2[(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 2 ), respectively. Treatment of 1 with YCl3(THF)3, SmCl3(THF)1.77, TmI3(DME)3, and LuCl3(THF)3 gives the mixed ansa‐metallocenes [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LnX (X = Cl, Ln = Y ( 3 ), Sm ( 4 ), Lu ( 5 ); X = I, Ln = Tm ( 6 )), respectively. The reaction of 2 with LuCl3(THF)3 yields [(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LuCl ( 7 ). Compound 4 reacts with LiMe to give the corresponding alkyl derivative [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]Sm(CH3) ( 8 ). The new complexes were characterized by elemental analyses, MS spectrometry, and NMR spectroscopy. The molecular structures of 5 and 6 were determined by single crystal X‐ray diffraction.  相似文献   
9.
Deprotonation Reactions of Silylated Amido Complexes of Rare Earth Elements The deprotonation of the rare earth element-tris(bistrimethylsilyl)amides Ln[N(SiMe3)2]3 of scandium, ytterbium, and lutetium with sodium-bis(trimethylsilyl)amide in THF leads to the complexes [Na(THF)3LnCH2SiMe2NSiMe3{N(SiMe3)2}2] [Ln = Sc ( 1 ), Yb ( 2 ), and Lu ( 3 )]. According to crystal structure analyses of 1 and 2 the metal atoms Sc and Yb are constituents of planar LnCSiN four-membered rings. At the same time, the C atom of the CH2 group is coordinated with the sodium ion in a linear axis Ln–C–Na; the sodium ion obtains a distorted tetrahedral arrangement by three THF molecules. The equatorial positions of the methylene-C atom, which is coordinated in a trigonal bipyramidal fashion, are occupied by the two H atoms and the Si atom of the four-membered ring. 2.6-dimethylbenzoisonitrile can be inserted into the Yb–CH2 bond of 2 and the new five-membered heterocylce YbNCSiN originates, the exocyclic CH2 group of which enters into a C–C coupling with the centrosymmetric dimer 4 while the ytterbium undergoes reduction. At the same time, sodium-7-methyl indolate is formed, which together with [NaN(SiMe3)2(THF)2] forms the centrosymmetric dimeric molecular aggregate [NaN(SiMe3)2(THF)2Na(C9H16N)]2 ( 5 ). 1 : Space group P21/n, Z = 8, lattice dimensions at –80 °C: a = 2941.4(2), b = 1205.5(1), c = 2952.4(3) pm; β = 113.455(8)°; R1 = 0.0625. 2 : Space group P21/n, Z = 8, lattice dimensions at –80 °C: a = 2943.9(1), b = 1219.5(1), c = 2944.3(1) pm; β = 113.372(4)°; R1 = 0.0361. 4 : Space group P 1, Z = 4, lattice dimensions at –80 °C: a = 1117.0(1), b = 1207.5(1), c = 1614.3(2) pm; α = 73.634(10)°, β = 82.091(10)°, γ = 74.391(10)°; R1 = 0.0525. 5 : Space group P21/n, Z = 2, lattice dimensions at –80 °C: a = 1126.7(1), b = 1459.3(1), c = 1741.1(1) pm; β = 96.461(8)°; R1 = 0.0458. Quantum chemical DFT calculations of the scandium model compound [Na(Me2O)3ScCH2SiMe2NSiH3{N(SiH3)2}2] ( 1 M ) give a very large negative charge at the pentacoordinated carbon atom of the four-membered ring that is concentrated in a lone-pair orbital which has mainly p character. The carbon atom interacts with the positively charged scandium atom mainly by Coulombic interactions.  相似文献   
10.
Organometallic Compounds of the Lanthanides. 139 Mixed Sandwich Complexes of the 4 f Elements: Enantiomerically Pure Cyclooctatetraenyl Cyclopentadienyl Complexes of Samarium and Lutetium with Donor‐Functionalized Cyclopentadienyl Ligands The reactions of [K{(S)‐C5H4CH2CH(Me)OMe}], [K{(S)‐C5H4CH2CH(Me)NMe2}] and [K{(S)‐C5H4CH(Ph)CH2NMe2}] with the cyclooctatetraenyl lanthanide chlorides [(η8‐C8H8)Ln(μ‐Cl)(THF)]2 (Ln = Sm, Lu) yield the mixed cyclooctatetraenyl cyclopentadienyl lanthanide complexes [(η8‐C8H8)Sm{(S)‐η5 : η1‐C5H4CH2CH(Me)OMe}] ( 1 a ), [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH2CH(Me)NMe2}] (Ln = Sm ( 2 a ), Lu ( 2 b )) and [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH(Ph)CH2NMe2}] (Ln = Sm ( 3 a ), Lu ( 3 b )). For comparison, the achiral compounds [(η8‐C8H8)Ln{η5 : η1‐C5H4CH2CH2NMe2}] (Ln = Sm ( 4 a ), Lu ( 4 b )) are synthesized in an analogous manner. 1H‐, 13C‐NMR‐, and mass spectra of all new compounds as well as the X‐ray crystal structures of 3 b and 4 b are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号