首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1514篇
  免费   187篇
  国内免费   1121篇
化学   2430篇
晶体学   37篇
力学   38篇
综合类   10篇
数学   14篇
物理学   293篇
  2024年   29篇
  2023年   101篇
  2022年   169篇
  2021年   230篇
  2020年   212篇
  2019年   135篇
  2018年   106篇
  2017年   135篇
  2016年   99篇
  2015年   90篇
  2014年   144篇
  2013年   182篇
  2012年   99篇
  2011年   135篇
  2010年   90篇
  2009年   117篇
  2008年   83篇
  2007年   109篇
  2006年   124篇
  2005年   87篇
  2004年   72篇
  2003年   60篇
  2002年   37篇
  2001年   39篇
  2000年   32篇
  1999年   23篇
  1998年   21篇
  1997年   9篇
  1996年   10篇
  1995年   12篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有2822条查询结果,搜索用时 15 毫秒
1.
The hydrogen ionization process is studied experimentally on an industrial sintered nickel oxide electrode in models of sealed nickel-metal hydride batteries. It is shown that the hydrogen ionization rates that are reached during overcharge by high current densities in conditions of forced gas delivery into the electrode pores (up to 40 mA cm?2) exceed the self-discharge rate of a nickel-hydrogen battery by two orders of magnitude. Up to 70% of hydrogen delivered into the compact assembly block undergoes ionization during forced charge of models of sealed nickel-metal hydride batteries with a closed hydrogen cycle. Two independent methods (potentiostatic and manometric) are used to determine the relationship between rates of hydrogen ionization with the degree of the electrode filling with gas and perform estimation of the process intensity at a unit reaction surface. It is established that, in conditions of forced gas delivery, practically all the hydrogen oxidation current is generated at the surface of the nickel oxide electrode beneath thin films of an electrolyte solution at the rate of 4–5 mA cm?2. It is shown that the hydrogen oxidation rate on a nickel oxide electrode filled in part by gas is independent of the electrode potential, probably because of a tangible contribution made by diffusion limitations to the overall hampering of the process.  相似文献   
2.
On a new calcium vanadate: synthesis, structure and Li insertion behavior   总被引:2,自引:0,他引:2  
A synthetic form of the mineral hewettite was prepared via a new route in aqueous medium, starting either from the crystalline compound Li1.1V3O8, or from its amorphous precursor. The anhydrous, crystalline derivative Ca0.5V3O8 was obtained by heating the synthetic hewettite at 250°C under dynamic vacuum. The diffraction studies show that the 2D structure of Ca0.5V3O8 involves the same V3O8 layers as in the hewettite or in Li1+αV3O8. The stacking of the layers is similar to that in the metahewettite. A structural model is proposed, where the Ca2+ ions occupy octahedral sites in the interlayer space. The electrochemical behavior of Ca0.5V3O8 vs. lithium insertion is presented. It is original and reveals particularly good performances in terms of stability during cycling at C/5 rate. The homologues obtained with Mg or Ba, instead of Ca, are briefly presented.  相似文献   
3.
Gel polymer electrolyte (GPE) films comprising of poly(vinylidenefluoride), propylene carbonate, ethylene carbonate and zinc trifluoromethane sulfonate are prepared and characterized. The composition of GPE is optimized to contain minimum liquid components with a maximum specific conductivity of 3.94×10−3 S cm−1 at (25±1) °C. A detailed investigation on the properties such as ionic conductivity, transport number, electrochemical stability window, reversibility of Zn/Zn2+ couple and Zn/gel electrolyte interfacial stability have been carried out. The ionic conductivity follows a VTF behaviour with an activation energy of about 0.0014 eV. Cationic transport number varies from 0.51 at 25 °C to 0.18 at 70 °C. Several cells have been assembled with GPE as the electrolyte, zinc as the anode, γ-MnO2 as the cathode and their charge–discharge behaviour followed. Capacity values of 105, 82, 64 and 37 mAh/g of MnO2 have been achieved at 10, 50, 100 and 200 μA/cm2 discharge current densities, respectively. The discharge capacity values are almost constant for about 55 cycles for all values of current densities. Cyclic voltammetric study of MnO2 electrode in Zn/GPE/MnO2 cell clearly shows intercalation/deintercalation of Zn2+.  相似文献   
4.
计算机模拟仿真射频磁控溅射实验制备薄膜及离于电池电极,研究了在特定实验条件下薄膜的生长过程,并分析了影响薄膜生长的部分因素。  相似文献   
5.
The solid diffusion coefficient of lithium-ion in LiCoO2 cathode material has been investigated by the capacity intermittent titration technique (CITT) at different voltages and at different charge/discharge cycles. By SEM, XRD and FTIR techniques, the structure of LiCoO2 was studied before and after charge-discharge cycles, and the relationship between solid diffusion coefficient and crystal structure was further discussed. CITT results show that the value of Li+ solid diffusion coefficient of LiCoO2 is about 10-12 cm2·s-1. During the whole charge-discharge cycles, the Li+ solid diffusion coefficient decreased within the voltage of 4.0~4.3 V, which is attributed to the change of the structure of LiCoO2.  相似文献   
6.
泡沫铅对VRLA电池负极活性物质结构及性能影响   总被引:3,自引:0,他引:3  
0引言随着36V/42V汽车电源系统的提出,新一轮汽车用电池的竞争不断加剧。从目前情况看,铅酸电池由于具有成本低廉,使用可靠,原材料来源丰富,铅回收率可高达98%等优点,因此成为电动车电源最实际的选择之一[1]。但作为电动车用电池,需要克服其比能量低、充电接受能力差和负极硫酸盐化等缺点。为此各国科学家开展了大量的研究工作。最近报道用铸造多孔体作为敞口铅酸电池的集流体,它的比表面积为14cm2·cm-3,正极活性物质利用率上升到50%,远高于传统的铸造板栅[2]。在铅酸电池集流体研究领域里另一个重大进步,就是以R V C(R etic-ulated V i…  相似文献   
7.
本非水电池体系由Li负极、多孔石墨电极和电解质溶液组成;电解质溶液由无机溶剂POCl_3(或有机溶剂硝基苯)和溶解在该溶剂中的活性物质(KIBr_2)及支持电解质构成。该电池体系的开路电压为8.50伏左右,放电性能良好,可望在实际中得到应用。此外,对电池体系的反应机理也作了初步的探讨。  相似文献   
8.
IntroductionLithium ion batteries are key components of mobiletelephones and portable computers.Among the knownLi-intercalation materials for lithium ion battery cath-odes,LiCoO2,LiNiO2,and LiMn2O4have been stud-ied extensively[1—3].LiCoO2is nowused in c…  相似文献   
9.
The development of highly active and stable reversible oxygen electrocatalysts is crucial for improving the efficiency of metal-air battery devices. Herein, an efficient liquid exfoliation strategy was designed for producing silk-like FeS2/NiS2 hybrid nanocrystals with enhanced reversible oxygen catalytic performance that displayed excellent properties for Zn-air batteries. Because of the unique silk-like morphology and interface nanocrystal structure, they can catalyze the oxygen evolution reaction (OER) efficiently with a low overpotential of 233 mV at j = 10 mA cm?2. This is an improvement from the recently reported catalysts in 1.0 M KOH. Meanwhile, the oxygen reduction reaction (ORR) activity of the silk-like FeS2/NiS2 hybrid nanocrystals showed an onset potential of 911 mV and a half-wave potential of 640 mV. In addition, the reversible oxygen electrode activity of the silk-like FeS2/NiS2 hybrid nanocrystals was calculated to be 0.823 V, based on the potential of the OER and ORR. Further, the homemade rechargeable Zn-air batteries using FeS2/NiS2 hybrid nanocrystals as the air-cathode displayed a high open-circuit voltage of 1.25 V for more than 17 h and an excellent rechargeable performance for 25 h. The solid Zn-air batteries exhibited an excellent rechargeable performance for 15 h. This study provided a new method for designing interface nanocrystals with a unique morphology for efficient multifunctional electrocatalysts in electrochemical reactions and renewable energy devices.  相似文献   
10.
E.E. Ferg  N. Rust 《Polymer Testing》2007,26(8):1001-1014
Polypropylene (PP) is one of the most common plastics used in the manufacturing of lead-acid battery cases, where the recycling of the material has become common practice, being both economically viable and environmentally friendly. During the recycling process, the various components of the spent battery are separated, where the crushed battery case is washed in order to remove any excess acid and lead-containing particles. The plastic components are subsequently melted and extruded into pellets that are then blended with virgin material to injection mold new battery cases and lids. This study showed that a significant amount of lead-containing particles in the form of lead dioxide and lead sulfate remain in the recycled plastic, and are evenly distributed throughout the polymer matrix. TEM studies showed that the particles are less than 1 μm in size and X-ray diffraction analysis of ashed recycled PP samples showed the presence, amongst others, of talc, calcium carbonate, rutile and iron oxide. These compounds come from a range of fillers, flame-retardants, colorants and impurities that originated from the various original battery cases that were recycled. The study showed that modern X-ray fluorescence (XRF) analysis is a quick and reliable method to quantify the amount of the elements found in the plastic and that the concentration of Pb in the plastic can be used as a type of “tracer” to determine the amount of recycled PP used in the manufacturing of a particular battery case. The study also showed that there is possible environmental contamination, in particular with Pb and Br contained in recycled PP during the injection molding process and the burning of the plastic. The Pb- and Br-containing particles are small enough to become air-borne during the burning process of the plastic, resulting in them being part of the soot and other hydrocarbon oils that are emitted. No Pb was observed in the gases emitted during simulated low-temperature injection molding conditions; however, a significant amount of Br was detected in the gases at the lower temperatures. Clear environmental waste classification of the battery case plastic should be done before its final incineration where the amount of trace metals present and its possible contamination to the environment should be considered. Care should also be taken for machine operators who work with the recycled plastic, that no excessive exposure to the halogenated compounds is experienced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号