首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2356篇
  免费   87篇
  国内免费   447篇
化学   2311篇
晶体学   67篇
力学   24篇
综合类   7篇
数学   3篇
物理学   478篇
  2024年   13篇
  2023年   85篇
  2022年   43篇
  2021年   77篇
  2020年   59篇
  2019年   74篇
  2018年   55篇
  2017年   71篇
  2016年   67篇
  2015年   64篇
  2014年   94篇
  2013年   185篇
  2012年   115篇
  2011年   162篇
  2010年   81篇
  2009年   117篇
  2008年   141篇
  2007年   147篇
  2006年   179篇
  2005年   114篇
  2004年   145篇
  2003年   128篇
  2002年   90篇
  2001年   88篇
  2000年   60篇
  1999年   64篇
  1998年   84篇
  1997年   58篇
  1996年   54篇
  1995年   31篇
  1994年   21篇
  1993年   29篇
  1992年   16篇
  1991年   17篇
  1990年   9篇
  1989年   8篇
  1988年   15篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有2890条查询结果,搜索用时 15 毫秒
1.
On a new calcium vanadate: synthesis, structure and Li insertion behavior   总被引:2,自引:0,他引:2  
A synthetic form of the mineral hewettite was prepared via a new route in aqueous medium, starting either from the crystalline compound Li1.1V3O8, or from its amorphous precursor. The anhydrous, crystalline derivative Ca0.5V3O8 was obtained by heating the synthetic hewettite at 250°C under dynamic vacuum. The diffraction studies show that the 2D structure of Ca0.5V3O8 involves the same V3O8 layers as in the hewettite or in Li1+αV3O8. The stacking of the layers is similar to that in the metahewettite. A structural model is proposed, where the Ca2+ ions occupy octahedral sites in the interlayer space. The electrochemical behavior of Ca0.5V3O8 vs. lithium insertion is presented. It is original and reveals particularly good performances in terms of stability during cycling at C/5 rate. The homologues obtained with Mg or Ba, instead of Ca, are briefly presented.  相似文献   
2.
The Mannich-type reaction of imines with (1-methoxy-2-methylpropenyloxy)trimethylsilane and aza-Diels-Alder reaction of imines with Danishefsky's diene can be carried out in scCO2 in the presence of lithium heptadecafluorooctanesulfonate which offer a way to synthesize β-amino carbonyl compounds and nitrogen-containing six-membered ring compounds under environmentally benign conditions.  相似文献   
3.
4.
5.
Spongy-like reticular structure is a unique morphology fabricated by electrostatic spray deposition (ESD) technique. The effects of solvent, substrate temperature, precursor feeding rate, static electric field strength, and deposition time on tailoring the reticular structure were investigated. Scanning electron microscopy was used to observe the film morphology. MnOx or LiMn2O4 were selected as the model materials. It is found that in addition to the conventional solvent butyl carbitol, other kinds of solvents such as ethylene glycol and propylene glycol can also be used to obtain reticular films at a suitable substrate temperature. Porous films with a low cross-linking degree pore structure can be prepared by increasing precursor feeding rate or decreasing substrate temperature. Increasing the deposition time or the electric field strength helps to obtain reticular films with more homogeneous pore size distribution. In addition, the addition of a high boiling-point solvent in mixed alcohol solvent results in the increase of proper substrate temperature. It is concluded that the fluidity of the spray droplets on the surface of a hot substrate is an important factor to form a reticular film.  相似文献   
6.
Nanocrystalline FeS2 cathode material of lithium cell was synthesized from cheap materials of FeSO4, Na2S2O3, and sulfur by a hydrothermal process. The scanning electron microscopy analysis showed the obtained material was nano-sized, about 500 nm. The X-ray powder diffraction analysis showed that the synthetic FeS2 material had two phases of the crystalline structure, pyrite and marcasite. The phase of marcasite seems to have no negative effect on the electrochemical performance of the material. The synthetic FeS2 showed a significant improvement of electrochemical performance for Li/FeS2 cells.  相似文献   
7.
Materials from the Mn(0.5−x)CaxTi2(PO4)3 (0≤x≤0.50) solid solution were obtained by solid-state reaction in air at 1000 °C. Selected compositions were investigated by powder X-ray diffraction analysis, 31P nuclear magnetic resonance (NMR) spectroscopy and electrochemical lithium intercalation. The structure of all samples determined by Rietveld analysis is of the Nasicon type with the R space group. Mn2+/Ca2+ ions occupy only the M1 sites in the Ti2(PO4)3 framework. The divalent cations are ordered in one of two M1 sites, except for the Mn0.50Ti2(PO4)3 phase, where a small departure from the ideal order is observed by XRD and 31P MAS NMR. The electrochemical behaviour of Mn0.50Ti2(PO4)3 and Mn(0.5−x)CaxTi2(PO4)3 phases was characterised in Li cells. Two Li ions can be inserted without altering the Ti2(PO4)3 framework. In the 0≤y≤2 range, the OCV curves of Li//LiyMn0.50Ti2(PO4)3 cells show two main potential plateaus at 2.90 and 2.50–2.30 V. Comparison between the OCV curves of Li//Li(1+y)Ti2(PO4)3 and Li//LiyMn0.50Ti2(PO4)3 shows that the intercalation occurs first in the unoccupied M1 site of Mn0.50Ti2(PO4)3 at 2.90 V and then, for compositions y>0.50, at the M2 site (2.50–2.30 V voltage range). The effect of calcium substitution in Mn0.50Ti2(PO4)3 on the lithium intercalation is also discussed from a structural and kinetic viewpoint. In all systems, the lithium intercalation is associated with a redistribution of the divalent cation over all M1 sites. In the case of Mn0.50Ti2(PO4)3, the stability of Mn2+ either in an octahedral or tetrahedral environment facilitates cationic migration.  相似文献   
8.
9.
Using the full-potential linearized augmented plane wave (FP-LAPW) method, we have studied the effect of chemistry on the average intercalation voltage (AIV) caused by the Na ions intercalating into transition metal oxides. The effect of transition metal was systematically studied by varying M=Co, Ni and Mn in NaMO2 and fixing the α-NaFeO2 layered structure. The effect of the guest atoms into the host material is discussed in terms of the structural and electronic properties. Comparatively to Li intercalation, a significant electron transfer towards transition metal was found. This observation suggests that the transition metal contribute to the AIV determination and confirms the common assumption that intercalated electron reduces M4+ to M3+.  相似文献   
10.
SbPO4, a phosphate with a layered structure, was tested as an electrode material for lithium cells spanning the 3.0-0.0 V range. Two main electrochemical processes were detected as extensive plateaus at ca. 1.6 and 0.7 V in galvanostatic measurements. The first process was found to be irreversible, thus excluding a potential intercalation-like mechanism for the reaction and being better interpreted as a decomposition reaction leading to the formation of elemental Sb. This precludes the use of this compound as a cathodic material for lithium cells. By contrast, the process at 0.7 V is reversible and can be ascribed to the formation of lithium-antimony alloys. The best electrochemical response was obtained by cycling the cell at a C/20 discharge rate over the voltage range 1.25-0.25 V. Under these conditions, the cell delivers an average capacity of 165 Ah/kg—a value greater than those reported for other phosphates—upon successive cycling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号