首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
化学   5篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
In this work, using human acute promyelocytic leukemia cells (HL-60) as a model, a novel microfluidic paper-based electrochemical cyto-device (μ-PECD) was fabricated to demonstrate a facile, portable, and disposable approach for cancer cell detection and in situ screening of anticancer drugs in a high-throughput manner. In this μ-PECD, aptamers modified three-dimensional macroporous Au-paper electrode (Au-PE) was fabricated and employed as the working electrode for specific and efficient cancer cell capture as well as for sequential in-electrode 3D cell culture. This Au-PE showed enhanced capture capacity for cancer cells and good biocompatibility for preserving the activity of captured living cells. Sensitive cancer cell detection was achieved in this μ-PECD, which could respond down to four HL-60 cells in 10 μL volume with a wide linear calibration range from 5.0 × 102 to 7.5 × 107 cells mL−1 and exhibited good stability and reproducibility. Then, in situ anticancer drug screening was successfully implemented in this μ-PECD through monitoring of the apoptotic cancer cells after the in-electrode 3D cell culture with drug-containing culture medium, demonstrating its wide range of potential applications to facilitate effective clinical cancer diagnosis and treatment.  相似文献   
2.
Paper-based microfluidic devices are an alternative technology for fabricating simple, low-cost, portable and disposable platforms for clinical diagnosis. Hereby, a novel wax dipping method for fabricating paper-based microfluidic devices (μPADs) is reported. The iron mould for wax dipping was created by a laser cutting technique. The designed pattern was transferred onto paper by dipping an assembly mould into melted wax. The optimal melting temperature and dipping time were investigated. The optimal melting temperature was in the range of 120-130 °C, and the optimal dipping time was 1 s. The whole fabrication process could be finished within 1 min without the use of complicated instruments or organic solvents. The smallest hydrophilic channel that could be created by the wax dipping method was 639 ± 7 μm in size. The reproducibility of the μPAD fabrication for hydrophilic channel width of the test zone and sample zone was 1.48% and 6.30%, respectively. To verify the performance of the μPAD, multiple colorimetric assays for simultaneous detection of glucose and protein in real samples were performed. An enzymatic assay and the bromocresol green (BCG) method were conducted on the paper device to determine the presence of glucose and protein in a test solution. The results of the assays were not significantly different from those of the conventional methods (p > 0.05, pair t-test and one-way ANOVA method). The wax dipping provides a new alternative method for fabricating lab-on-paper devices for multiple clinical diagnostics and will be very beneficial for developing countries.  相似文献   
3.
4.
Although paper‐based analysis is known for centuries, only during the last decade this simple substrate became an object of detailed microfluidic studies. In order to obtain optimum performance and separation of the analytes in a microfluidic channel, devices should be optimized, both in terms of architecture and paper properties. Enzyme immobilization methods can not only increase the storage stability but also have an impact on the flow in paper matrix, providing additional charges, and changing the porous structure of paper. Therefore it should be guaranteed that the method of choice will not obstruct the flux in the final device. Paper‐based device proposed in this study was composed of a bioactive channel, Pt working electrode, pencil drawn pseudo‐reference electrode, a buffer filled sponge providing the wicking solution and a stack of wicking pads to guarantee continuous flow. Based on our previous research we chose 4 methods of enzyme immobilization relying on different phenomena (adsorption, covalent linkage, layer‐by‐layer, capsules). Different channel architectures were also evaluated in order to achieve optimum time of the enzymatic reaction, separation of peaks and the time of measurement. Experimental results were compared with computer simulations. Final device could quantify glucose (2.0–10.0 mmol L?1) and uric acid (0.1–1.2 mmol L?1) in their clinical range with good repeatability.  相似文献   
5.
Electrochemical paper-based analytical devices (ePADs) with integrated plasma isolation for determination of glucose from whole blood samples have been developed. A dumbbell shaped ePAD containing two blood separation zones (VF2 membranes) with a middle detection zone was fabricated using the wax dipping method. The dumbbell shaped device was designed to separate plasma while generating homogeneous flow to the middle detection zone of the ePAD. The proposed ePADs work with whole blood samples with 24–60% hematocrit without dilution, and the plasma was completely separated within 4 min. Glucose in isolated plasma separated was detected using glucose oxidase immobilized on the middle of the paper device. The hydrogen peroxide generated from the reaction between glucose and the enzyme pass through to a Prussian blue modified screen printed electrode (PB-SPEs). The currents measured using chronoamperometry at the optimal detection potential for H2O2 (−0.1 V versus Ag/AgCl reference electrode) were proportional to glucose concentrations in the whole blood. The linear range for glucose assay was in the range 0–33.1 mM (r2 = 0.987). The coefficients of variation (CVs) of currents were 6.5%, 9.0% and 8.0% when assay whole blood sample containing glucose concentration at 3.4, 6.3, and 15.6 mM, respectively. Because each sample displayed intra-individual variation of electrochemical signal, glucose assay in whole blood samples were measured using the standard addition method. Results demonstrate that the ePAD glucose assay was not significantly different from the spectrophotometric method (p = 0.376, paired sample t-test, n = 10).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号