首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   13篇
  国内免费   15篇
化学   153篇
物理学   5篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   11篇
  2013年   15篇
  2012年   6篇
  2011年   8篇
  2010年   11篇
  2009年   10篇
  2008年   8篇
  2007年   15篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
排序方式: 共有158条查询结果,搜索用时 31 毫秒
1.
A series of novel multifunctional hydrogels that combined the merits of both thermoresponsive and biodegradable polymeric materials were designed, synthesized, and characterized. The hydrogels were copolymeric networks composed of N‐isopropylacrylamide (NIPAAM) as a thermoresponsive component, poly(L‐lactic acid) (PLLA) as a hydrolytically degradable and hydrophobic component, and dextran as an enzymatically degradable and hydrophilic component. The chemical structures of the hydrogels were characterized by an attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR) technique. The hydrogels were thermoresponsive, showing a lower critical solution temperature (LCST) at approximately 32 °C, and their swelling properties strongly depended on temperature changes, the balance of the hydrophilic/hydrophobic components, and the degradation of the PLLA component. The degradation of the hydrogels caused by hydrolytic cleavage of ester bonds in the PLLA component was faster at 25 °C below the LCST than at 37 °C above the LCST, determined by the ATR–FTIR technique. Due to their multifunctional properties, the designed hydrogels show great potential for biomedical applications, including drug delivery and tissue engineering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5054–5066, 2004  相似文献   
2.
Temperature-sensitive poly (N-vinylcaprolactam) both in water-soluble state and in gel was prepared by γ-radiation polymerization. The effects of radiation dose, radiation dose rate and monomer concentration on polymerization and the low critical solution temperature characteristics of the polymer were studied. The results show that the polymer prepared within certain radiation dose (beyond 2 kGy) and dose rate range (2–14 Gy/min) has good temperature sensitivity and uniformity.  相似文献   
3.
Several batches of poly-N,N-diethylacrylamide were synthesized by anionic and by group transfer polymerization (GTP). A radical poly-N,N-diethylacrylamide prepared from the same monomer was also included in the comparison. According to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) both types of living polymerization resulted in narrow molecular weight distributions with Mw/Mn values below 1.5. Average molecular weights (Mn) between 888 and 4678 g/mol were calculated in these cases. The radical polymer had an average molecular weight (Mn) of approximately 130,000 g/mol. The dry anionic and GTP polymers were investigated by differential scanning calorimetry (DSC) and x-ray diffraction spectrometry. Evidence for partial crystallinity in the solid state was found. The conformation of all polymers was examined by high resolution (600 MHz) NMR. According to these measurements, 75% of the ? CHR? groups of the anionic poly-N,N-diethylacrylamide were located in an isotactic triade. The remaining 25% had heterotactic structure, while no indication for the presence of syndiotactic protons was found. Poly-N,N-diethylacrylamide prepared by GTP, on the other hand, had mainly syndiotactic structure. The aqueous solutions of the polymers showed phase separation upon heating. Whereas the lower critical solution temperature (LCST) was approximately 30°C in the case of the poly-N,N-diethylacrylamide prepared by GTP and by radical polymerization, uncommonly high LCSTs of more than 40°C were observed for the anionic poly-N,N-diethylacrylamide. © 1994 John Wiley & Sons, Inc.  相似文献   
4.
5.
含疏水链节的聚N-异丙基丙烯酰胺共聚物的温敏性   总被引:1,自引:0,他引:1  
采用溶液聚合法合成了一系列N-异丙基丙烯酰胺(NIPAM)与甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯或甲基丙烯酸丁酯的无规共聚物,用浊度观测法和光散射法测定了不同共聚物水溶液的温敏相转变行为.结果表明:所得共聚物的低临界溶解温度(LCST)均低于均聚物PNIPAM的,酯类单体的结构和含量对共聚物的LCST有显著影响,其中酯基上的烷基对共聚物LCST的影响能力大于丙烯酸酯α位上的烷基,前者对增大共聚物的疏水性有更大贡献.通过NIPAM与特定丙烯酸酯单体进行无规共聚可以合成转变温度低于PNIPAM均聚物且具有预设LCST数值的水溶性温敏聚合物.  相似文献   
6.
温敏性聚合物复合体系低临界溶解温度的研究   总被引:1,自引:0,他引:1  
研究了温敏性N-异丙基丙烯酰胺的均聚物(PNIPAm)及其共聚物P(NIPAm-co-KYD)与十六烷基三甲基氯化铵(CTAC)、乙二胺四乙酸(EDTA)、盐等复配体系的低临界溶解温度(LCST)的变化规律。单因素复配体系中,wEDTA为0.1%时,体系LCST从33℃降低到25℃,增大到0.2%时,LCST下降趋于缓慢;wCTAC在0.5%-3.0%范围内,LCST先上升后下降,但wCTAC在0.5%-1.0%内相转变很不明显,超过1.5%后相转变又趋于明显;而无机盐能使体系LCST线性下降;多因素复配体系中LCST变化较缓和,易于控制且相转变现象明显。  相似文献   
7.
NMR spectra were collected for poly(N‐isopropylacrylamide) (PNIPAAm) hydrogel using high‐resolution magic angle spinning (HRMAS) after gel pieces were hydrated in the presence of D2O, NaF, NaCl, and NaI aqueous solutions. Changes in the peak height intensity of the spectra provide quantitative insight into the phase transition process. The thermodynamic values of the phase transition were calculated using a van't Hoff analysis of the NMR data. Unlike the trend observed for decreases in the (LCST), changes in the enthalpy and entropy did not clearly display a linear dependence with respect to salt concentration. Rather, it was observed that increases in salt concentration did not affect the enthalpy and entropy to the extent as the initial change observed between no salt and 100 mM solutions. Finally, the effect of salts on the hysteresis of the rehydrating process was observed. Hysteresis occurs due to the need for hydrophobic interactions to break down before water is able to infiltrate the polymer matrix. NaF stabilizes hydrophobic interactions while NaI destabilize hydrophobic interactions, causing them to break down at higher temperatures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
8.
The article describes synthesis and thermally triggered self‐assembly of a Poly (ethylene oxide)‐block‐poly (N‐insopropylacrylamide) (PEO‐b‐PNIPAm) in aqueous medium. At rt, the polymer remains as unimer, however, at lower critical solution temperature (LCST) of PNIPAm (32 °C), it forms a rather large undefined aggregate which at slightly elevated temperature (~40 °C) converges to well defined polymersome structure (Critical aggregation concentration = 0.45 mg/mL) with hydrodynamic diameter of 40–50 nm. By lowering the temperature, initial swelling of the compact vesicle followed by reversible disassembly to unimer was noticed. The polymersome exhibits encapsulation ability to a hydrophilic dye Calcein which can be spontaneously released by lowering the temperature below cloud point. Likewise a hydrophobic dye namely 8‐Anilino‐1‐naphthalenesulfonic acid (ANS) can also be encapsulated and released by thermal trigger. Detail photoluminescence studies reveal ANS dye can be used as a generalized probe molecule for detecting LCST of a thermoresponsive polymer by “fluorescence on” above LCST even by cursory observation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2444–2451  相似文献   
9.
In this work, ultrafast differential scanning calorimetry (UFDSC) is used to study the dynamics of phase separation. Taking poly(vinyl methyl ether)/polystyrene (PVME/PS) blend as the example, we firstly obtained the phase diagram that has lower critical solution temperature (LCST), together with the glass transition temperature (Tg) of the homogeneous blend with different composition. Then, the dynamics of the phase separation of the PVME/PS blend with a mass ratio of 7:3 was studied in the time range from milliseconds to hours, by the virtue of small time and spatial resolution that UFDSC offers. The time dependence of the glass transition temperature (Tg) of PVME‐rich phase, shows a distinct change when the annealing temperature (Ta) changes from below to above 385 K. This corresponds to the transition from the nucleation and growth (NG) mechanism to the spinodal decomposition (SD) mechanism, as was verified by morphological and rheometric investigations. For the SD mechanism, the temperature‐dependent composition evolution in PVME‐rich domain was found to follow the Williams–Landel–Ferry (WLF) laws. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1357–1364  相似文献   
10.
The thermodynamics, structures, and applications of thermoresponsive systems, consisting primarily of water solutions of organic salts, are reviewed. The focus is on organic salts of low melting temperatures, belonging to the ionic liquid (IL) family. The thermo-responsiveness is represented by a temperature driven transition between a homogeneous liquid state and a biphasic state, comprising an IL-rich phase and a solvent-rich phase, divided by a relatively sharp interface. Demixing occurs either with decreasing temperatures, developing from an upper critical solution temperature (UCST), or, less often, with increasing temperatures, arising from a lower critical solution temperature (LCST). In the former case, the enthalpy and entropy of mixing are both positive, and enthalpy prevails at low T. In the latter case, the enthalpy and entropy of mixing are both negative, and entropy drives the demixing with increasing T. Experiments and computer simulations highlight the contiguity of these phase separations with the nanoscale inhomogeneity (nanostructuring), displayed by several ILs and IL solutions. Current applications in extraction, separation, and catalysis are briefly reviewed. Moreover, future applications in forward osmosis desalination, low-enthalpy thermal storage, and water harvesting from the atmosphere are discussed in more detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号