首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
化学   44篇
  2020年   7篇
  2019年   15篇
  2018年   2篇
  2017年   10篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
排序方式: 共有44条查询结果,搜索用时 0 毫秒
1.
A metal‐free photoanode nanojunction architecture, composed of B‐doped carbon nitride nanolayer and bulk carbon nitride, was fabricated by a one‐step approach. This type of nanojunction (s‐BCN) overcomes a few intrinsic drawbacks of carbon nitride film (severe bulk charge recombination and slow charge transfer). The top layer of the nanojunction has a depth of ca. 100 nm and the bottom layer is ca. 900 nm. The nanojunction photoanode results into a 10‐fold higher photocurrent than bulk graphitic carbon nitride (G‐CN) photoanode, with a record photocurrent density of 103.2 μA cm−2 at 1.23 V vs. RHE under one sun irradiation and an extremely high incident photon‐to‐current efficiency (IPCE) of ca. 10 % at 400 nm. Electrochemical impedance spectroscopy, Mott–Schottky plots, and intensity‐modulated photocurrent spectroscopy show that such enhancement is mainly due to the mitigated deep trap states, a more than 10 times faster charge transfer rate and nearly three times higher conductivity due to the nanojunction architecture.  相似文献   
2.
The construction of layered covalent carbon nitride polymers based on tri-s-triazine units has been achieved by using nucleobases (adenine, guanine, cytosine, thymine and uracil) and urea to establish a two-dimensional semiconducting structure that allows band-gap engineering applications. This biomolecule-derived binary carbon nitride polymer enables the generation of energized charge carrier with light-irradiation to induce photoredox reactions for stable hydrogen production and heterogeneous organosynthesis of C−O, C−C, C−N and N−N bonds, which may enrich discussion on chemical reactions in prebiotic conditions by taking account of the photoredox function of conjugated carbonitride semiconductors that have long been considered to be stable HCN-derived organic macromolecules in space.  相似文献   
3.
Solid-state Li metal batteries (SSLMBs) have attracted considerable interests due to their promising energy density as well as high safety. However, the realization of a well-matched Li metal/solid-state electrolyte (SSE) interface remains challenging. Herein, we report g-C3N4 as a new interface enabler. We discover that introducing g-C3N4 into Li metal can not only convert the Li metal/garnet-type SSE interface from point contact to intimate contact but also greatly enhance the capability to suppress the dendritic Li formation because of the greatly enhanced viscosity, decreased surface tension of molten Li, and the in situ formation of Li3N at the interface. Thus, the resulting Li-C3N4|SSE|Li-C3N4 symmetric cell gives a significantly low interfacial resistance of 11 Ω cm2 and a high critical current density (CCD) of 1500 μA cm−2. In contrast, the same symmetric cell configuration with pristine Li metal electrodes has a much larger interfacial resistance (428 Ω cm2) and a much lower CCD (50 μA cm−2).  相似文献   
4.
5.
The charge transfer between hydrogen evolution photocatalysts (HEPs) and oxygen evolution photocatalysts (OEPs) is the rate‐determining step that controls the overall performance of a Z‐scheme water‐splitting system. Here, we carefully design reduced graphene oxide (RGO) nanosheets for use as solid‐state mediators to accelerate the charge carrier transfer between HEPs (e.g., polymeric carbon nitride (PCN)) and OEPs (e.g., Fe2O3), thus achieving efficient overall water splitting. The important role of RGO could also be further proven in other PCN‐based Z‐systems (BiVO4/RGO/PCN and WO3/RGO/PCN), illustrating the universality of this strategy.  相似文献   
6.
Red phosphorus is a promising photocatalyst with wide visible-light absorption up to 700 nm, but the fast charge recombination limits its photocatalytic hydrogen evolution reaction (HER) activity. Now, [001]-oriented Hittorf's phosphorus (HP) nanorods were successfully grown on polymeric carbon nitride (PCN) by a chemical vapor deposition strategy. Compared with the bare PCN and HP, the optimized PCN@HP hybrid exhibited a significantly enhanced photocatalytic activity, with HER rates reaching 33.2 and 17.5 μmol h−1 from pure water under simulated solar light and visible light irradiation, respectively. It was theoretically and experimentally indicated that the strong electronic coupling between PCN and [001]-oriented HP nanorods gave rise to the enhanced visible light absorption and the greatly accelerated photoinduced electron–hole separation and transfer, which benefited the photocatalytic HER performance.  相似文献   
7.
Graphitic carbon nitride (g‐CN) has emerged as a promising material for energy‐related applications. However, exploitation of g‐CN in practical devices is still limited owing to difficulties in fabricating g‐CN films with adjustable properties and high surface area. A general and simple pathway is reported to grow highly porous and large‐scale g‐CN films with controllable chemical and photophysical properties on various substrates using the doctor blade technique. The growth of g‐CN films, ascribed to the formation of a supramolecular paste, comprises g‐CN monomers in ethylene glycol, which can be cast on different substrates. The g‐CN composition, porosity, and optical properties can be tuned by the design of the supramolecular paste, which upon calcination results in a continuous porous g‐CN network. The strength of the porous structure is demonstrated by high electrochemically active surface area, excellent dye adsorption and photoelectrochemical and photodegradation properties.  相似文献   
8.
Research on the photochemical reduction of CO2, initiated already 40 years ago, has with few exceptions been performed by using amines as sacrificial reductants. Hydrocarbons are high-volume chemicals whose dehydrogenation is of interest, so the coupling of a CO2 photoreduction to a hydrocarbon-photodehydrogenation reaction seems a worthwhile concept to explore. A three-component construct was prepared including graphitic carbon nitride (g-CN) as a visible-light photoactive semiconductor, a polyoxometalate (POM) that functions as an electron acceptor to improve hole–electron charge separation, and an electron donor to a rhenium-based CO2 reduction catalyst. Upon photoactivation of g-CN, a cascade is initiated by dehydrogenation of hydrocarbons coupled to the reduction of the polyoxometalate. Visible-light photoexcitation of the reduced polyoxometalate enables electron transfer to the rhenium-based catalyst active for the selective reduction of CO2 to CO. The construct was characterized by zeta potential, IR spectroscopy, thermogravimetry, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). An experimental Z-scheme diagram is presented based on electrochemical measurements and UV/Vis spectroscopy. The conceptual advance should promote study into more active systems.  相似文献   
9.
Photosynthetic conversion of CO2 into fuel and chemicals is a promising but challenging technology. The bottleneck of this reaction lies in the activation of CO2, owing to the chemical inertness of linear CO2. Herein, we present a defect‐engineering methodology to construct CO2 activation sites by implanting carbon vacancies (CVs) in the melon polymer (MP) matrix. Positron annihilation spectroscopy confirmed the location and density of the CVs in the MP skeleton. In situ diffuse reflectance infrared Fourier transform spectroscopy and a DFT study revealed that the CVs can function as active sites for CO2 activation while stabilizing COOH* intermediates, thereby boosting the reaction kinetics. As a result, the modified MP‐TAP‐CVs displayed a 45‐fold improvement in CO2‐to‐CO activity over the pristine MP. The apparent quantum efficiency of the MP‐TAP‐CVs was 4.8 % at 420 nm. This study sheds new light on the design of high‐efficiency polymer semiconductors for CO2 conversion.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号