首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
化学   5篇
  2014年   1篇
  2011年   1篇
  2007年   2篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The ketiminate complex AlCl[OC(Me)CHC(Me)N(p-C6H4F)]2 (4) has been prepared from the β-aminoenone, OC(Me)CHC(Me)N(H)(p-C6H4F) (3) by lithiation of 3 with n-BuLi, followed by reaction with AlCl3 and by the reaction of 3 with Me2AlCl. A second compound, [AlCl2{OC(Me)CHC(Me)N(H)(p-C6H4F)}4][AlCl4] (5), was also isolated from the AlCl3 reaction. The structures of 4 and 5 were determined by X-ray diffraction analysis.  相似文献   
2.
Magnesium complexes containing ketiminate ligands were synthesized and characterized. MgBu2 reacted readily in toluene with two equiv. of [MeC(O)CHC(NHAr)Me], where Ar = 2,6-diisopropylphenyl, to generate [MeC(O)CHC(NAr)Me]2Mg (1) in 43% yield. The four-coordinate magnesium compound 1 is very moisture sensitive and acts as a Lewis acid, accepting one equiv. of Lewis base to form five-coordinate magnesium compounds. Compound [MeC(O)CHC(NAr)Me]2Mg[MeC(O)CHC(NHAr)Me] (2) was obtained in 57% yield from the reaction in toluene of MgBu2 with three equiv. of [MeC(O)CHC(NHAr)Me]. Treatment of 1 with one equiv. of free ketimine ligands [MeC(O)CHC(NHAr)Me] also led to the formation of 2. The bulky η1-ketimine of 2 can be replaced with a less bulky Lewis base such as pyridine. Treatment of 1 with excess pyridine in toluene at ambient temperature led to the formation of compound [MeC(O)CHC(NAr)Me]2Mg[NC5H5] (3) as colorless crystalline solids in 51% yield. Compounds 1, 2, and 3 were characterized by NMR and X-ray crystallography. Compounds 2 and 3 showed no activity toward the polymerization of ε-caprolactone at 25 °C after 3 h. However, when the temperature was increased to 70 °C, compounds 2 and 3 efficiently catalyzed polymerization of ε-caprolactone to generate high molecular weight poly-ε-caprolactones. The polydispersity index (PDI) of these poly-ε-caprolactones is in the range 1.57-3.18.  相似文献   
3.
A series of four, five and six‐coordinated magnesium derivatives integrating with substituted pyrrole and ketimine ligands are conveniently synthesized. Reaction of two equiv of 2‐dimethylaminomethyl pyrrole with Mg[N(SiMe3)2]2 in THF affords the monomeric magnesium complex Mg[C4H3N(2‐CH2NMe2)]2 (THF)2 ( 1 ) in high yield along with elimination of two equiv of HN(SiMe3)2. Similarly, the reaction between two equiv of 2‐t‐butylaminomethyl pyrrole and Mg[N(SiMe3)2]2 in THF renders the magnesium derivative, Mg[C4H3N(2‐CH2NHtBu)]2(THF)22( 2 ) in good yield. Interestingly, reaction between two equiv of 2‐t‐butylaminomethyl pyrrole and Mg[N(SiMe3)2]2 in toluene, instead of THF, generates Mg[C4H3N(2‐CH2NHtBu)]2 ( 3 ), also in high yield. Furthermore, the assembly of two equiv of ketimine ligand, HOCMeCHCMeNAr (Ar = C6H3‐2,6‐iPr2) and Mg[N(SiMe3)2]2, yields five‐coordinated magnesium derivatives, Mg(OCMeCHCMeNAr)2(THF) ( 4 ) and Mg(OCMeCHCMeNAr)2(OEt2) ( 5 ), using THF and diethyl ether, respectively. All the aforementioned derivatives are characterized by 1H and 13C NMR spectroscopy as well as 1 , 3 , 4 and 5 are subjected to X‐ray diffraction analysis in solid state.  相似文献   
4.
A series of Cu(I) and Cu(II) complexes containing substituted ketiminate ligands was synthesized. Reaction of CuCl2 with 2 equiv. of Li[OC(Me)CHC(Me)N(Ar)] in toluene generated dark green solid of Cu[OC(Me)CHC(Me)N(Ar)]2 (1). Similarly, Cu(I) complex, {Cu[OC(Me)CHC(Me)N(Ar)]Li[OC(Me)CHC(Me)N(Ar)]}2 (2) was synthesized by reacting 2 equiv. of Li[OC(Me)CHC(Me)N(Ar)] with CuCl in toluene at room temperature for 12 h. While the reaction of CuCl with Li[OC(Me)CHC(Me)N(Ar)] in the presence of triphenylphosphine in THF solution at room temperature, a three-coordinated Cu[OC(Me)CHC(Me)N(Ar)](PPh3) (3) can be isolated in high yield. Replacing the PPh3 of 3 with N-heterocarbene (NHC) generates Cu[OC(Me)CHC(Me)N(Ar)](NHC) (4) in low yield. Complexes 2, 3, and 4 were characterized by 1H and 13C NMR spectroscopies and all molecules were structurally characterized by X-ray diffractometry. Two coordination modes of ketiminate ligands were found in the molecular structure of 2, one of which is copper-coordinated terminal ketiminates and the other is lithium-copper-coordinated bridging ketiminates.  相似文献   
5.
The reaction of LLi, (L = [RNC(Me)CHC(Me) = O] (R = C2H4NEt2)), with AlCl3 at −78 °C forms the mono-ketiminate product, LAlCl2, 1, while the same reaction at 0 °C affords the bis-ketiminate complex, [{(LH)2AlCl}(Cl2)], 2, Reduction of 1 with Lio, Ko or Mgo yielded an unusual dimeric aluminum(III) species, [L′AlCl]2, 3, where C-C coupling of the ligand backbone is observed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号