首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
  国内免费   1篇
化学   41篇
物理学   7篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1977年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
Copper oxide decorated multi‐walled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE) was prepared for determination of isoniazid (INZ) in various matrices. The electrochemical behavior of INZ was tested with the aid of Cyclic Voltammetry (CV) and quantitative experiments were performed by using Linear Sweep Voltammetry (LSV). Morphological and structural characterization of the modified electrode was performed by utilizing Scanning Electron Microscopy (SEM), X‐Ray Photoelectron Spectroscopy (XPS) while electrochemical characterization was performed by using CV and Electrochemical Impedance spectroscopy (EIS). The proposed sensor exhibited well defined anodic peak at 0.30 V for INZ at pH 6.0 medium. Under the optimum conditions, a linear relation between INZ concentration and peak current was observed in the range of 2.0×10?7 to 5.0×10?5 M. Limit of detection was calculated as 1.0×10?8 M and repeatability and accuracy was found as 5.60 % and 91.0 % for 5.0 10?7 M INZ by using 3 successive measurement, respectively. Then, the analytic performance of the electrode developed was tested by analyzing commercial tablets, artificial human serum and urine samples. The results indicated that satisfactory recoveries was observed for all issue.  相似文献   
2.
Song Z  Lü J  Zhao T 《Talanta》2001,53(6):2510-1177
A novel chemiluminescence (CL) sensor for isoniazid combined with flow-injection technology is presented in this paper. The analytical reagents, luminol and ferricyanide, were both immobilized on an anion-exchange column. The CL signal produced by the reaction between luminol and ferricyanide, which were eluted from the column through sodium phosphate injection, was decreased in the presence of isoniazid. The decreased CL intensity was linear with isoniazid concentration in the range 0.001–1.0 μg·ml−1; and the detection limit was 0.35 ng·ml−1 (3s). The whole process, including sampling and washing, could be completed in 2 min with a relative standard deviation of less than 4.1%. The sensor could be reused more than 400 times and has been applied for the determination of isoniazid in pharmaceutical preparations.  相似文献   
3.
高效液相色谱—化学发光法研究异烟肼和利福平   总被引:8,自引:0,他引:8  
基于异烟肼和利福平在碱性介质中能与K3Fe(CN)6反应产生强的化学发光,因 此设计了一个经高效液相色谱(HPLC)分离柱后同时检测一线抗结构病药物异烟肼 、利福平的化学发光检测器。研究并优化了流动相、流速以及化学发光检测的条件 。该方法测定异烟肼、利福平的线性范围分别为0.05~6.0mg/L,0.08~20.0mg/L ,其检出限:异烟肼为2×10^-2mg/L,利福平为4×10^-2mg/L,测定的相对标准偏 差分别为1.9,2.9。该方法已成功地用于同时测定复方利福平片中利福平和异烟肼 的含量。  相似文献   
4.
应用异烟肼片粉末的近红外漫反射光谱数据分别结合偏最小二乘法(PLS)和径向基神经网络(RBFNN)建立定量分析模型,并用所建模型对预测集样品进行了预测,结果表明:应用RBFNN所建立的定量分析模型优于PLS模型,相关系数(r)值由0.99593提高到0.99734,交互验证均方根误差(RMSECV)值由0.00523下降到0.00423,预测均方根误差(RMSEP)值由0.00614下降到0.00501。  相似文献   
5.
6.
Amidosulfonic acid was electropolymerized by cyclic voltammetry onto the surface of glassy carbon electrode (GCE) to fabricate the chemically modified electrode, which showed high stability, good selectivity and reproducibility for determination of isoniazid. The modified electrode showed an excellent electrocatalytical effect on the oxidation of isoniazid. Under the optimum conditions, there was a good linear relationship between anodic peak current and isoniazid concentration in the range of 5.0 x 10(-8)- 1.0 x 10(-5) M, and a detection limit of 1.0 x 10(-8) M (S/N = 3) was obtained after 120 s at the accumulation potential of - 0.2 V (vs. SCE). This developed method had been applied to the direct determination of isoniazid in injection and tablet samples with satisfactory results.  相似文献   
7.
《Analytical letters》2012,45(15):2125-2135
A rapid, sensitive, and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with hydrophilic interaction chromatography has been developed and validated for the simultaneous determination of isoniazid and acetylisoniazidin human plasma. Following precipitation of the protein, the analytes were extracted from human plasma, with high extraction recovery (>70%) for both Isoniazid and acetylisoniazid. The analytes were then separated using a hydrophilic interaction chromatography (HILIC) column and detected by electrospray ionization (ESI) mass spectrometry performed with a triple-quadrupole mass spectrometry. The quantification of the analytes was realized by low-energy collision dissociation tandem mass spectrometry (CID-MS/MS) using the multiple reaction monitoring (MRM) mode at m/z of 138.1→121.1 for isoniazid and m/z 180.1 → 138.1 for acetylisoniazid, respectively. The method was linear over the concentration range of 5–50,000 ng/mL for both. The intra-day and inter-day relative standard deviations (RSD) were less than 15% and the relative errors (RE) were all within 15%. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic studies of isoniazid related to NAT2 genetic polymorphism in healthy Chinese subjects. The results showed that there were significant differences in the pharmacokinetic parameters of isoniazid and acetylisoniazid between subjects with and without mutations in the NAT2 gene.  相似文献   
8.
The macroscopic rate constants of formation (k1) and hydrolysis (k2) for the reactions of pyridoxal 5′-phosphate (PLP) with hydrazine (PLP-HY system), carbidopa (-hydrazino--methyl-β-(3,4-dihydroxyphenyl)propionic acid, PLP-CD system), hydralazine (1-hydrazinophthalazine, PLP-HL system) and isoniazid (4-pyridinecarboxylic acid hydrazide, PLP-ISO system) were fitted to a kinetic scheme that considers the different ionic species present in the medium, their protonation constants, and their individual rates of formation (k1i) and hydrolysis (k2i). The results obtained for the molecules bearing the hydrazine group are compared with those for the reactions of PLP with n-hexylamine (PLP-NHA system) and poly- -lysine (PLP-LYS system). Some structural effects on the individual rate constants are also examined.  相似文献   
9.
《Electroanalysis》2005,17(10):915-918
The voltammetric behavior of isoniazid and hydrazine at an overoxidized polypyrrole modified glassy carbon electrode has been investigated. The obtained cyclic voltammograms showed that their oxidation peaks were overlapped and it is difficult to determine them individually from a mixture without separation. To overcome this limitation, a procedure was proposed for resolution of overlapped voltammetric signals from mixtures of isoniazid and hydrazine. In this procedure, genetic algorithm was used for the selection of potentials for partial least squares. A feed forward artificial neural network with back propagation error algorithm was used to process the nonlinear relationship between currents and concentrations of hydrazine and isoniazid. The proposed method was suitable for determination of isoniazid in pharmaceutical tablets and detection of hydrazine impurities in the same samples.  相似文献   
10.
This paper covers the construction and behaviour of a mixed binder carbon paste electrode system appropriate for the cathodic stripping voltammetric quantitation of iso-niazid. The mixed binder consisted of glycerol and liquid paraffin. At the mixed binder carbon paste electrodes in a pH 3.0 buffer solution, isoniazid showed two sensitive cathodic stripping voltammetric wave at-0. 75 V (p1) and-0. 88 V (p2) , respectively. The p2 can be used for the determination of trace amounts of isoniazid, the linear range of the peak current to the isoniazid concentration being from 5. 0×10-7 to 5.0×10-5 mol/L, and the limit of detection being 1. 0×10-7 mol/L with a relative standard deviation of 6. 0%(n=10). The proposed method was directly used to determine the drug in blood serum without the pretreatment of blood serum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号