首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   5篇
  国内免费   3篇
化学   69篇
力学   1篇
物理学   34篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   13篇
  2010年   10篇
  2009年   7篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
  1998年   4篇
排序方式: 共有104条查询结果,搜索用时 31 毫秒
1.
The two families of intermetallic phases REAuAl4Ge2 (1) (RE=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm and Yb) and REAuAl4(AuxGe1−x)2 (2) (x=0.4) (RE=Ce and Eu) were obtained by the reactive combination of RE, Au and Ge in liquid aluminum. The structure of (1) adopts the space group R-3m (CeAuAl4Ge2, , ; NdAuAl4Ge2, , ; GdAuAl4Ge2, , ; ErAuAl4Ge2, , ). The structure of (2) adopts the tetragonal space group P4/mmm with lattice parameters: , for EuAuAl4(AuxGe1−x)2 (x=0.4). Both structure types present slabs of “AuAl4Ge2” or “AuAl4(AuxGe1−x)2” stacking along the c-axis with layers of RE atoms in between. Magnetic susceptibility measurements indicate that the RE atoms (except for Ce and Eu) possess magnetic moments consistent with +3 species. The Ce atoms in CeAuAl4Ge2 and CeAuAl4(AuxGe1−x)2 (x=0.4) appear to be in a mixed +3/+4 valence state; DyAuAl4Ge2 undergoes an antiferromagnetic transition at 11 K and below this temperature exhibits metamagnetic behavior. The Eu atoms in EuAuAl4(AuxGe1−x)2 (x=0.4) appear to be in a 2+ oxidation state.  相似文献   
2.
The structural properties of the Mg0.65Sc0.35Dx deuterides have been investigated by X-ray and neutron powder diffraction at different deuterium content (0?x?2.2 D/f.u.). The metallic phase adopts a pseudo-CsCl structure (Pm-3m space group (SG); a=3.5921(2) Å) that transforms upon hydrogenation into a face centered cubic (FCC) phase involving an elongation of the c-axis, a shrinkage of the a-axis and a re-ordering of the metallic atoms. The fully hydrided compound (2.2 D/f.u.) adopts a cubic structure (Fm-3m SG; a=4.8087(7) Å) and deuterium is located in fully occupied tetrahedral sites and partially filled (24%) octahedral sites. Upon desorption, a two-phase domain appears with coexistence of a hydrogen-rich (1.55 D/f.u.) and a hydrogen-poor (0.85 D/f.u.) phase (Fm-3m SG; a=4.7598(3) and 4.6936(3) Å, respectively). All deuterium atoms are located in the tetrahedral sites with different occupancy factors: 77% for the H-rich phase and 43% for the H-poor phase. The appearance of a plateau in the pressure-composition-isotherm curve measured at 573 K confirms this two-phase behavior. The structural properties of the Mg0.65Sc0.35Dx system are discussed and compared with other body centered cubic (BCC) alloys adopting the same structure.  相似文献   
3.
New indides SrAu3In3 and EuAu3In3 were synthesized by induction melting of the elements in sealed tantalum tubes. Both indides were characterized by X-ray diffraction on powders and single crystals. They crystallize with a new orthorhombic structure type: Pmmn, Z=2, a=455.26(9), b=775.9(2), c=904.9(2) pm, wR2=0.0425, 485 F2 values for SrAu3In3 and a=454.2(2), b=768.1(6), c=907.3(6) pm, wR2=0.0495, 551 F2 values for EuAu3In3 with 26 variables for each refinement. The gold and indium atoms build up three-dimensional [Au3In3] polyanionic networks, which leave distorted hexagonal channels for the strontium and europium atoms. Within the networks one observes Au2 atoms without Au-Au contacts and gold zig-zag chains (279 pm Au1-Au1 in EuAu3In3). The Au-In and In-In distances in EuAu3In3 range from 270 to 290 and from 305 to 355 pm. The europium atoms within the distorted hexagonal channels have coordination number 14 (8 Au+6 In). EuAu3In3 shows Curie-Weiss behavior above 50 K with an experimental magnetic moment of 8.1(1) μB/Eu atom. 151Eu Mössbauer spectra show a single signal at δ=−11.31(1) mm/s, compatible with divalent europium. No magnetic ordering was detected down to 3 K.  相似文献   
4.
Synchrotron diffraction studies of TiC/FeTi cermets obtained by SHS   总被引:1,自引:0,他引:1  
TiC/FeTi composites have been obtained in situ by Self-propagating High-temperature Synthesis (SHS) of an intimate mixture of compacted powders of elemental carbon, titanium and iron. The reaction has been followed in real time by X-ray diffraction at the ESRF. The mechanism of the reaction is discussed in terms of the formation of a liquid phase corresponding to the eutectic of the Fe/Ti system prior to the TiC synthesis. Temperatures of reaction have been estimated by correlating thermal expansion coefficients with diffraction peaks shifts. The microstructures obtained by this method, suitable for cutting tools and wear resistant applications, are presented.  相似文献   
5.
The newly found ternary compound NdNiMg5 has been studied within DFT based methodologies. Results of cohesive energy, charge transfers, elastic constants and electron localized function mapping as well as electronic structure and bonding properties have been compared with those of isostructural binary NdNi. The calculation results have shown that Mg substructures interlayering NdNi – like slabs exhibit different magnitudes of charge transfers all within range of metallic behavior and the different Mg substructures selectively bind with Nd and Ni substructures. As a consequence an enhanced cohesion with respect to binary intermetallic NdNi is identified. The whole set of elastic constants and their combinations in orthorhombic symmetry confirm the mechanical stability of NdNiMg5 with larger compressibility and less ductility (more brittleness) with respect substructures to NdNi. While in an intermetallic compound such as NdNi the bonding is ensured mainly by Nd–Ni interaction, in NdNiMg5 Nd–Ni, Nd–Mg, Ni–Mg as well as Mg–Mg participate to the bonding and the extra electrons brought by Mg are found within bonding states thus illustrating furthermore the enhanced cohesion of the ternary versus the binary systems.  相似文献   
6.
The stannides RE2Au3Sn6 (RE = La, Ce, Pr, Nd, Sm) were synthesized from the elements by arc-melting. Small single crystals were grown by annealing samples in sealed tantalum tubes in an induction furnace with a special annealing sequence. The polycrystalline phases were characterized through their X-ray powder diffraction pattern. The structures of Ce2Au3Sn6, Pr2Au3Sn6, and Nd2Au3Sn6 were refined from single-crystal X-ray diffractometer data. The RE2Au3Sn6 stannides crystallize with the orthorhombic La2Zn3Ge6 type, space group Cmcm. The basic structural building units are Au1@Sn4 tetrahedra and Au2@Sn5 square pyramids. These units are condensed to layers and the structure can be described by a simple stacking of tetrahedral and pyramidal layers with the rare earth cations in between. Temperature dependent susceptibility studies indicate that all rare earth atoms are in the trivalent oxidation state, as their effective magnetic moments match the expected values of the free RE3+ ions. Pr2Au3Sn6 and Nd2Au3Sn6 exhibit antiferromagnetic ordering at TN = 6.3(1) and 6.7(1) K. Investigations of the electrical resistivity of La2Au3Sn6 and Ce2Au3Sn6 confirmed that these compounds are metallic, for La2Au3Sn6 a lower resistivity was observed, in line with the absence of screening unpaired electrons. 119Sn Mössbauer spectra for La2Au3Sn6, Ce2Au3Sn6, Pr2Au3Sn6 and Nd2Au3Sn6 show a complex superposition of three sub-spectra which can be differentiated through their distinctly different quadrupole splitting parameters. The isomer shifts (1.87 to 2.22 mm · s–1) indicate significant s electron density at the tin nuclei.  相似文献   
7.
The indium-rich intermetallic compound SrIrIn6 was synthesized from the elements in a sealed tantalum ampoule at 1173 K, followed by slow cooling for crystal growth. SrIrIn6 crystallizes with a new structure type which was characterized by X-ray powder and single crystal diffraction: Pmma, a = 852.34(2), b = 434.54(5), c = 1059.18(6) pm, wR2 = 0.0178, 884 F2 values, and 32 variables. The SrIrIn6 structure shows two basic building units: (i) Ir@In9 tricapped trigonal prisms (261–292 pm Ir–In) and (ii) distorted bcc In@In8 cubes (301 to 329 pm In–In). The strontium cations fill cages within the complex three-dimensional [IrIn6] network and have coordination number 13 (Sr@In13) in form of a tricapped pentagonal prism. The SrIrIn6 structure can be described as a simple intergrowth variant of SrIrIn4 (LaCoAl4 type) with indium slabs. The crystal chemical similarities with the structures of SrIrIn4, SrIr2In8 and Eu3Ir2In15 are discussed.  相似文献   
8.
YbSi2 and the derivatives YbTxSi2–x (T = Cr, Fe, Co) crystallizing in the α‐ThSi2 structure type were obtained as single crystals from reactions run in liquid indium. All silicides were investigated by single‐crystal X‐ray diffraction, I41/amd space group and the lattice constants are: a = 3.9868(6) Å and c = 13.541(3) Å for YbSi2, a = 4.0123(6) Å and c = 13.542(3) Å for YbCr0.27Si1.73, a = 4.0142(6) Å and c = 13.830(3) Å for YbCr0.71Si1.29, a = 4.0080(6) Å and c = 13.751(3) Å for YbFe0.34Si1.66, and a = 4.0036(6) Å, c = 13.707(3) Å for YbCo0.21Si1.79. YbSi2 and YbTxSi2–x compounds are polar intermetallics with three‐dimensional Si and M (T+Si) polyanion sub‐networks, respectively, filled with ytterbium atoms. The degree of substitution of transition metal at the silicon site is signficant and leads to changes in the average bond lengths and bond angles substantially.  相似文献   
9.
In the present work, solid-state reactions in Sm2(Co, Fe, Cu, Zr)17-type alloys have been investigated by means of in situ electrical resistivity measurements. Changes in the electrical resistivity of a Sm(Co0.74Fe0.1Cu0.12Zr0.04)8.5 alloy after solid solution treatment at 1190 °C, quenching to room temperature, and during isothermal ageing at temperatures between 400 and 900 °C, have indicated microstructural/phase changes occurring at temperatures below those commonly used for the development of high coercivity in Sm(Co, Fe, Cu, Zr)z-type materials. Subsequent crystallographic and magnetic transition measurements have shown a high degree of correlation with respect to the changes observed in the electrical resistivity during isothermal ageing.  相似文献   
10.
The silicides ScTSi (T=Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) were synthesized by arc-melting and characterized by X-ray powder diffraction. The structures of ScCoSi, ScRuSi, ScPdSi, and ScIrSi were refined from single crystal diffractometer data. These silicides crystallize with the TiNiSi type, space group Pnma. No systematic influences of the 45Sc isotropic magnetic shift and nuclear electric quadrupolar coupling parameters on various structural distortion parameters calculated from the crystal structure data can be detected. 45Sc MAS-NMR data suggest systematic trends in the local electronic structure probed by the scandium atoms: both the electric field gradients and the isotropic magnetic shifts relative to a 0.2 M aqueous Sc(NO3)3 solution decrease with increasing valence electron concentration and within each T group the isotropic magnetic shift decreases monotonically with increasing atomic number. The 45Sc nuclear electric quadrupolar coupling constants are generally well reproduced by quantum mechanical electric field gradient calculations using the WIEN2k code.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号