首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   13篇
力学   1篇
物理学   2篇
  2021年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Two new cyclic RGD peptides were prepared using a click chemistry approach. The linear RGDfV peptide was synthesized by solid-phase peptide synthesis using a 9-fluorenylmetoxicarbonyl (Fmoc) strategy and a 2-chlorotrityl chloride resin. After coupling 5-hexynoic acid the peptide was cleaved from the resin and linked to propargylamine. The bis-alkynyl RGDfV peptide was then reacted with two different bis-azides by treatment with copper iodide and triethylamine. These two cyclic RGD peptides were characterized by NMR and HRMS. In order to evaluate the interaction of these new compounds with integrin αvβ3 docking experiments were carried out and the results compared with those obtained with cyclo(RGDf[N–Me]V) (Cilengitide). The two new cyclic RGD peptides showed a higher affinity to the αvβ3 integrin when compared with Cilengitide thus representing two new potential integrin αvβ3 antagonists.  相似文献   
2.

Computational tools can bridge the gap between sequence and protein 3D structure based on the notion that information is to be retrieved from the databases and that knowledge-based methods can help in approaching a solution of the protein-folding problem. To this aim our group has implemented neural network-based predictors capable of performing with some success in different tasks, including predictions of the secondary structure of globular and membrane proteins, the topology of membrane proteins and porins and stable f -helical segments suited for protein design. Moreover we have developed methods for predicting contact maps in proteins and the probability of finding a cysteine in a disulfide bridge, tools which can contribute to the goal of predicting the 3D structure starting from the sequence (the so called ab initio prediction). All our predictors take advantage of evolution information derived from the structural alignments of homologous (evolutionary related) proteins and taken from the sequence and structure databases. When it is necessary to build models for proteins of unknown spatial structure, which have very little homology with other proteins of known structure, non-standard techniques need to be developed and the tools for protein structure predictions may help in protein modeling. The results of a recent simulation performed in our lab highlights the role of high performing computing technology and of tools of computational biology in protein modeling and peptidomimetic design.  相似文献   
3.
Angiogenesis occurs during the process of tumor growth, invasion and metastasis, and is essential for the survival of solid tumors. As an integrin significantly overexpressed in human tumor vascular endothelial cells, αvβ3 is a suitable targeting site for anti-angiogenesis of tumor. We designed and prepared a selfassembling peptide (SAP) with the ability to targeting αvβ3 and self-assembly. SAP formed nanoparticles in solution and transformed into nanofibrous network once specifically binding to integrin αvβ3 on the surface of human umbilical vein endothelial cells (HUVECs). The SAP network stably anchored on HUVECs over 24 h, which consequently resulted in high-efficient inhibition of vascularization. In vitro anti-angiogenesis experiment displayed that the inhibition rate of tube-formation reached 94.9%. In vivo anti-angiogenesis array based on chick chorioallantoic membrane (CAM) model exhibited that the SAP had an inhibition rate up to 63.1%. These results indicated the outstanding anti-angiogenic ability of SAP, potentially for tumor therapy.  相似文献   
4.
Cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation for the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.  相似文献   
5.
6.
The first application of a combination of novel ψ[(E)-CXCX]-type alkene dipeptide isosteres to conformation studies of cyclic bioactive peptides was carried out (X=H or Me). For exploration of bioactive conformations of Kessler's cyclic RGD peptides, cyclo(-Arg-Gly-Asp-d-Phe-Val-) 1 and cyclo(-Arg-Gly-Asp-d-Phe-N-MeVal-) 2, d-Phe-ψ[(E)-CXCX]-l-Val-type dipeptide isosteres were utilized having di-, tri- and tetrasubstituted alkenes containing the γ-methylated isosteres that have been reported to be potential type II′ β-turn promoters. All of the (E)-alkene pseudopeptides 3-6 exhibited higher antagonistic potency against αvβ3 integrin than 1, although potencies were slightly lower than 2. Detailed structural analysis using 1H NMR spectroscopy revealed that representative type II′ β/γ backbone arrangements proposed for 1, were not observed in peptides 3-6. Rather on the basis of 1H NMR data, the conformations of peptides 3-6 were estimated to be more analogous to those of the N-methylated peptide 2.  相似文献   
7.
8.
This study aimed at examining the biophysical characteristics of human derived keratinocytes (HaCaT) cultured on cholesteryl ester liquid crystals (CELC). CELC was previously shown to improve sensitivity in sensing cell contractions. Characteristics of the cell integrin expressions and presence of extracellular matrix (ECM) proteins on the liquid crystals were interrogated using various immunocytochemical techniques. The investigation was followed by characterization of the chemical properties of the liquid crystals (LC) after immersion in cell culture media using Fourier transform infrared spectroscopy (FTIR). The surface morphology of cells adhered to the LC was studied using atomic force microscopy (AFM). Consistent with the expressions of the integrins α2, α3 and β1, extracellular matrix proteins (laminin, collagen type IV and fibronectin) were found secreted by the HaCaT onto CELC and these proteins were also secreted by cells cultured on the glass substrates. FTIR analysis of the LC revealed the existence of spectrum assigned to cholesterol and ester moieties that are essential compounds for the metabolizing activities of keratinocytes. The immunostainings indicated that cell adhesion on the LC is mediated by self-secreted ECM proteins. As revealed by the AFM imaging, the constraint in cell membrane spread on the LC leads to the increase in cell surface roughness and thickness of cell membrane. The biophysical expressions of cells on biocompatible CELC suggested that CELC could be a new class of biological relevant material.  相似文献   
9.
Although it is still not clear whether migratory trophoblasts reach the spiral arteries by migration within blood vessels against blood flow or by a mechanism of directional cell division/proliferation, this process involves the attachment and adhesion of trophoblasts to endothelial cells lining the blood vessel walls. This raises the possibility that the cell–cell contact with endothelial cells may regulate trophoblast cell adhesion behaviors according to the surrounding flow condition. To test this, the adhesion forces of early gestation human trophoblast cells (TCs) cultured on glass slides coated with type I rat collagen or cultured with human umbilical vein endothelial cells (HUVECs) were measured quantitatively using a micropipette aspiration technique. Then, the resistance of TCs co-cultured with HUVECs to flow-induced shear stress was assessed with a flow chamber technique. The results showed that the adhesion force of TCs to glass slides coated with collagen was positively correlated with the concentration of collagen. By contact with endothelial cells, the adhesion force and the resistance to shear stress for the TCs were significantly enhanced. The interdiction of integrin β1 interaction remarkably reduced the adhesion forces of TCs to endothelial cells, hence their resistance to shear stress. The results therefore suggest that the contacts of TCs with endothelial cells enhance the adhesion forces of human TCs, partially by regulating with the integrin β1 according to the flow condition (i.e., the shear stress) in such a way to prevent the TCs from being carried downstream by flowing blood.  相似文献   
10.
The (3S,6S,10S)-7/5 bicyclic lactam 8, designed as an external turn constraint, was synthesised by a new stereoselective route involving Eschenmoser condensation. The cyclic peptide 35 containing the integrin recognition motif GLDV added across the amino and carboxyl groups of the lactam external constraint 8 was prepared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号