首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   4篇
物理学   1篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
CE is the primary methodology used in forensic DNA typing. Alleles of commonly used types of genetic markers could be separated and detected via CE based on dye color and migration time. Insertion/deletion (InDel) is an ideal genetic marker for forensic DNA analysis due to their abundance in the human genome, low mutation rate, availability of their allele types via CE, and elimination of stutter peaks. Moreover, InDels could be used as ancestry informative markers since allele frequencies of InDels is different among geographically separated populations. Several ancestry informative insertion/deletion panels have been established based on CE platform to achieve the intercontinental populations distinction. However, improvements to differentiate intracontinental populations is few. In this study, 21 InDels with fixation index (FST) > 0.15 were selected and assembled into one ancestry informative insertion/deletion panel. Using well-designed primers, those 21 InDels could be amplified successfully and genotyped on the CE platform accurately and completely. The panel showed a large FST distance distinction among the ten Asian populations. Using clustering analysis, ten Asian populations were classified into three subgroups: East Asian, Southeast Asian, and South Asian subgroups. To evaluate the panel's capability in ancestry inference, a validation experiment was undertaken with 319 individuals from four geographically separated populations in China. Four Chinese populations were classified into different ancestry subgroups and 81.8% test individuals’ ancestry could be inferred correctly. Our result showed that development of high ancestry informative InDels panel based on CE platform is a potential for individual ancestry inference among intracontinental populations.  相似文献   
3.
《Electrophoresis》2018,39(16):2136-2143
Insertion/deletion polymorphisms (InDels), which possess the characteristics of low mutation rates and a short amplicon size, have been regarded as promising markers for forensic DNA analysis. InDels can be classified as bi‐allelic or multi‐allelic, depending on the number of alleles. Many studies have explored the use of bi‐allelic InDels in forensic applications, such as individual identification and ancestry inference. However, multi‐allelic InDels have received relatively little attention. In this study, InDels with 2–6 alleles and a minor allele frequency ≥0.01, in Chinese Southern Han (CHS), were retrieved from the 1000 Genomes Project Phase III. Based on the structural analysis of all retrieved InDels, 17 multi‐allelic markers with mononucleotide homopolymer structures were selected and combined in one multiplex PCR reaction system. Sensitivity, species specificity and applicability in forensic case work of the multiplex were analyzed. A total of 218 unrelated individuals from a Chinese Han population were genotyped. The combined discriminatory power (CDP), the combined match probability (CMP) and the cumulative probability of exclusion (CPE) were 0.9999999999609, 3.91E‐13 and 0.9956, respectively. The results demonstrated that this InDel multiplex panel was highly informative in the investigated population and most of the 26 populations of the 1000 Genomes Project. The data also suggested that multi‐allelic InDel markers with monomeric base pair expansions are useful for forensic applications.  相似文献   
4.
The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator® DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator® DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof‐of‐principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost‐effective alternative for some applications.  相似文献   
5.
Insertion/deletion (InDel) polymorphisms have been widely used in the fields of population genetics, genetic map constructions, and forensic investigations owing to the advantages of their low mutation rates, widespread distributions in the human genome, and small amplicon sizes. In order to provide more InDels with high discrimination power in Chinese populations, we selected and constructed one novel multiplex PCR‐InDel panel for forensic individual identification. Genetic distributions of these 35 InDels in five reference populations from East Asia showed low genetic differentiations among these populations. Forensic efficiency evaluations of these InDels revealed that these loci could perform well for forensic individual identifications in these reference populations. In the meantime, genetic diversities and forensic parameters of these InDels were further investigated in the studied Kazak group. Mean value of polymorphism information content for 35 InDels was 0.3611. Cumulative power of discrimination of 35 InDels was 0.99999999999999603 in Kazak group. Given these results, the panel is suitable for individual identifications in the studied Kazak and these reference populations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号