首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
  国内免费   2篇
化学   48篇
物理学   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   5篇
  2009年   12篇
  2008年   3篇
  2007年   7篇
  2006年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   3篇
  1994年   1篇
  1992年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
Chemical, chromatographic, or spectrometric methods are generally unsuitable for the detection of molecules in the nano and subnanogram region because of their low sensitivity. The radioimmunoassay (RIA) developed by Yalow and Berson in 1959 combined the high sensitivity of radioactively labeled substances with the high specificity of immunological reactions for the first time. In this way it was possible to detect quantitatively the tiniest traces of substances in the presence of an excess of other, in some cases, similar foreign substances without prior enrichment. Immunoassays have certainly developed to become the most valuable analytical tool of in vitro diagnostics and are today routinely employed for the detection of endogenous and exogenous substances (e.g. hormones, tumor-associated proteins, bacteria, viruses, toxins, drugs, etc). The many disadvantages of radioactivity such as the required handling licenses, disposal costs, precautions necessary to prevent risks to health, short shelf-life, and limited sensitivity soon led to the search for other nonradioactive labeling methods. Encouraged by the development of light measuring techniques and the commercial availability of highly sensitive apparatus, radioactive isotopes as labels are today being replaced increasingly by enzymes, fluorophores, or luminophores. Some of the new luminescent labels have, however, not only facilitated replacement of radioisotopes, but also a breakthrough into what has until now been unattainable levels of sensitivity. The following article reviews the methods of luminescent labeling and their applications mainly in the area of immunoassays.  相似文献   
2.
Immunoassays are one of the most convenient methods for environmental monitoring, but have been limited so far by low yield and low affinity antibodies (Abs). With the advent of recombinant Ab (rAb) technology and the expression of these Abs in organisms such as yeast, bacteria, insects and plants, widespread monitoring of our food and environment for organic contaminants using immunoassays has become feasible. A multitude of immunoassays have been developed to detect pesticides in soils, ground and river water, foods and biological samples, such as urine and semen. In this paper, we describe advances in Ab production, the move away from using animals, phage-display technologies and the advent of plant-derived Ab expression systems. Finally, we describe future possibilities in Ab technology for environmental monitoring.  相似文献   
3.
The stereospecific binding of monoclonal antibody (mAb) 8E11 to anti-benzo(a)pyrene diol epoxide (BPDE)-dG adducts in single nucleoside, long oligonucleotide, and genomic DNA were quantitatively evaluated using noncompetitive and competitive capillary electrophoresis (CE) immunoassays. Two single-stranded TMR-BPDE-90mers containing a single anti-BPDE-dG adduct with defined stereochemistry and a fluorescent label at 5′-end were used as fluorescent probes for competitive CE immunoassay. To quantitatively evaluate the binding affinity through competitive CE immunoassays, a series of equations were derived according to the binding stoichiometry. The binding of mAb 8E11 to trans-(+)-anti-BPDE-dG displays strongest affinity (Kb: 3.57 × 108 M−1) among all four investigated anti-BPDE-dG mononucleoside adducts, and the cis-(−)-anti-BPDE-dG displays lowest affinity (Kb: 1.14 ×107 M−1). The binding of monoclonal antibody (mAb) 8E11 to BPDE-dG adducts in long DNA (90mer) preferentially forms the complex with a stoichiometry of 1:1, and that mAb 8E11 displays a slightly higher affinity with trans-(+)-anti-BPDE-90mers (Kb: 6.36 ± 0.54 × 108 M−1) than trans-(−)-anti-BPDE-90mers (Kb: 4.52 ± 0.52 × 108 M−1). The mAb 8E11 also displays high affinity with BPDE-dG adducts in genomic DNA (Kb: 3.74 × 108 M−1), indicating its promising applications for sensitive immuno-detection of BPDE-DNA adducts in genomic DNA.  相似文献   
4.
《Electrophoresis》2018,39(11):1319-1328
Smartphones have become widely recognized as a very interesting detection and controlling tool in microfluidics. They are portable devices with built‐in cameras and internal microprocessors which carry out image processing. In this case, the external computers are not needed and phones can provide fast and accurate results. Moreover, the connectivity of smartphones gives the possibility to share and provide real‐time results when needed, whether in health diagnostics, environmental monitoring, immunoassays or food safety. Undoubtedly, the marriage of smartphones and microfluidics has a brilliant future in building low cost and easily operable systems for analysis in the field, realizing the idea of people's “smartlife”. The aim of this review is to present and summarize the main advantages and disadvantages of the use of smartphones as well as to take a closer look at some novel achievements published during the last couple of years. In the next paragraphs, readers will find specific uses of a combination of smartphones and microfluidics such as water analysis, health analysis (virus and bacteria detection), and measurement of physical properties or smartphone liquid control in polymer devices.  相似文献   
5.
Nanomaterial labels in electrochemical immunosensors and immunoassays   总被引:2,自引:0,他引:2  
Liu G  Lin Y 《Talanta》2007,74(3):308-317
This article reviews recent advances in nanomaterial labels in electrochemical immunosensors and immunoassays. Various nanomaterial labels are discussed, including colloidal gold/silver, semiconductor nanoparticles, and markers loaded nanocarriers (carbon nanotubes, apoferritin, silica nanoparticles, and liposome beads). The enormous signal enhancement associated with the use of nanomaterial labels and with the formation of nanomaterial-antibody-antigen assemblies provides the basis for ultrasensitive electrochemical detection of disease-related protein biomarkers, biothreat agents, or infectious agents. In general, all endeavors cited here are geared to achieve one or more of the following goals: signal amplification by several orders of magnitude, lower detection limits, and detecting multiple targets.  相似文献   
6.
Over the last decade biological assays (bioassays) have gained much importance for quality control in biopharmaceutical development and manufacturing. Here we describe the development and validation of a bioassay to determine the biological activity (potency) of the plasmid biopharmaceutical pVGI.1 which encodes the VEGF-C (VEGF-2) protein. This assay was developed to test drug substance and drug product for release and stability testing for phase I and II clinical trials. The main focus was on fast assay development and easy handling of the assay, combined with valid results representing the specific therapeutic mechanism. The method includes the expression of the VEGF-C protein in mammalian cells and its binding to the cell surface receptor VEGFR-3. The binding activity of VEGF-C to its immobilized receptor is quantified in a colorimetric assay. IC50 values of VEGF-C expressed after transfection with sample plasmid and an in-house standard plasmid are determined. The ratio of the IC50 value of the test article to that of the reference standard reflects the potency of the sample. The potency assay meets the criteria generally requested by authorities for precision, linearity, accuracy, and range. Therefore the assay can be used in pharmaceutical quality control and is a suitable basis for development of related bioassays.  相似文献   
7.
Field-flow fractionation (FFF) is a mature technique in bioanalysis, and the number of applications to proteins and protein complexes, viruses, derivatized nano- and micronsized beads, sub-cellular units, and whole cell separation is constantly increasing. This can be ascribed to the non-invasivity of FFF when directly applied to biosamples. FFF is carried out in an open-channel structure by a flow stream of a mobile phase of any composition, and it is solely based on the interaction of the analytes with a perpendicularly applied field. For these reasons, fractionation is developed without surface interaction of the analyte with packing or gel media and without using degrading mobile phases. The fractionation device can be also easily sterilized, and analytes can be maintained under a bio-friendly environment. This allows to maintain native conditions of the sample in solution.In this review, FFF principles are briefly described, and some pioneering developments and applications in the bioanalytical field are tabled before detailed report of most recent FFF applications obtained also with the hyphenation of FFF with highly specific, sensitive characterization methods. Special focus is finally given to the emerging use of FFF as a pre-analytical step for mass-based identification and characterization of proteins and protein complexes in proteomics.  相似文献   
8.
Microfluidic systems are capillary networks of varying complexity fabricated originally in silicon, but nowadays in glass and polymeric substrates. Flow of liquid is mainly controlled by use of electroosmotic effects, i.e. application of electric fields, in addition to pressurized flow, i.e. application of pressure or vacuum. Because electroosmotic flow rates depend on the charge densities on the walls of capillaries, they are influenced by substrate material, fabrication processes, surface pretreatment procedures, and buffer additives. Microfluidic systems combine the properties of capillary electrophoretic systems and flow-through analytical systems, and thus biochemical analytical assays have been developed utilizing and integrating both aspects. Proteins, peptides, and nucleic acids can be separated because of their different electrophoretic mobility; detection is achieved with fluorescence detectors. For protein analysis, in particular, interfaces between microfluidic chips and mass spectrometers were developed. Further levels of integration of required sample-treatment steps were achieved by integration of protein digestion by immobilized trypsin and amplification of nucleic acids by the polymerase chain reaction. Kinetic constants of enzyme reactions were determined by adjusting different degrees of dilution of enzyme substrates or inhibitors within a single chip utilizing mainly the properties of controlled dosing and mixing liquids within a chip. For analysis of kinase reactions, however, a combination of a reaction step (enzyme with substrate and inhibitor) and a separation step (enzyme substrate and reaction product) was required. Microfluidic chips also enable separation of analytes from sample matrix constituents, which can interfere with quantitative determination, if they have different electrophoretic mobilities. In addition to analysis of nucleic acids and enzymes, immunoassays are the third group of analytical assays performed in microfluidic chips. They utilize either affinity capillary electrophoresis as a homogeneous assay format, or immobilized antigens or antibodies in heterogeneous assays with serial supply of reagents and washing solutions.  相似文献   
9.
《Analytical letters》2012,45(16):2699-2707
Four multihapten antigens were conjugated to a single protein to obtain broad-specific polyclonal antibody characterization. The sensitivity and specificity of the polyclonal antibodies for parathion were evaluated with differences due to the structure of the determinant or the number of multihapten antigens. The sensitivity of immunoassay may decrease with a corresponding increase in the number of antigens in a multihapten immunogen or with an increase in complexity of the structure. The specificity of other analytes may broaden when the determinants of multihapten have similar structures.  相似文献   
10.
In this work an electrochemical immunoassay, based on a direct competitive assay, was developed using magnetic beads as solid phase and carbon screen‐printed arrays as transducers for the detection of sulfonamides in food matrices such as honey. Magnetic beads coated with protein A were modified by immobilisation of specific antibodies and then the competition between the target analyte and the corresponding analyte‐labelled with an enzyme was carried out; after the immunosensing step, beads were captured by a magnet onto the working surfaces of a screen‐printed eight‐electrodes array for a multiple electrochemical detection. Screen‐printed eight‐electrodes arrays were chosen as transducers due to the possibility to repeat multiple analysis and to test different samples simultaneously. Alkaline Phosphatase (AP) was used as enzyme label and Differential Pulse Voltammetry (DPV) as fast electrochemical technique. Calibration curves demonstrate that the developed electrochemical immunoassay was able to detect this class of drugs in standard solutions at low concentrations (ng/mL levels). The short incubation times (25 min) and the fast electrochemical measurement (10 sec) make of these systems a possible alternative to classic ELISA tests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号