首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   20篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Early warning systems for monitoring toxic events may benefit from the availability of monoclonal antibodies enabling the sensitive and specific detection of anatoxin‐a, a cyanotoxin involved in numerous cases of animal poisoning resulting from toxic algal blooms in freshwaters. Through the synthesis of three functionalized derivatives of anatoxin‐a, we have succeeded in generating the first‐ever reported immunoreagents (bioconjugates and antibodies) suitable for the development of immunoanalytical approaches aimed at rapid and onsite detection of this harmful cyanotoxin.  相似文献   
2.
3.
4.
Herein, we demonstrate that a very familiar, yet underutilized, physical parameter—gas pressure—can serve as signal readout for highly sensitive bioanalysis. Integration of a catalyzed gas‐generation reaction with a molecular recognition component leads to significant pressure changes, which can be measured with high sensitivity using a low‐cost and portable pressure meter. This new signaling strategy opens up a new way for simple, portable, yet highly sensitive biomedical analysis in a variety of settings.  相似文献   
5.
6.
7.
8.
A simple and versatile method for the modification of a broad spectrum of surfaces with thin polymer films through the thermally or photochemically induced generation of surface‐attached polymer networks is reported. The system is based on copolymers containing diazomalonate groups, which can be activated by heat or light. To this end, the copolymers are deposited from solution onto solid substrates by standard techniques of thin‐film deposition (spin coating, dip coating). Upon activation the diazomalonate group decomposes and forms a carbene, which induces C−H insertion crosslinking (CHic) reactions. In the course of this process network formation and covalent surface attachment occur at the same time. The crosslinking process proceeds very rapidly, especially when the carbenes generated in the activation process cannot undergo Wolff‐rearrangement. The presented system can be used for the generation of a wide range of polymer layers and microstructures on a broad spectrum of surfaces.  相似文献   
9.
Limitations on the number of proteins that can be quantified in single cells in situ impede advances in our deep understanding of normal cell physiology and disease pathogenesis. Herein, we present a highly multiplexed single‐cell in situ protein analysis approach that is based on chemically cleavable fluorescent antibodies. In this method, antibodies tethered to fluorophores through a novel azide‐based cleavable linker are utilized to detect their protein targets. After fluorescence imaging and data storage, the fluorophores coupled to the antibodies are efficiently cleaved without loss of protein target antigenicity. Upon continuous cycles of target recognition, fluorescence imaging, and fluorophore cleavage, this approach has the potential to quantify over 100 different proteins in individual cells at optical resolution. This single‐cell in situ protein profiling technology will have wide applications in signaling network analysis, molecular diagnosis, and cellular targeted therapies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号