首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
化学   17篇
物理学   1篇
  2020年   2篇
  2019年   2篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
A quantification method for imatinib (IM), its major metabolite N-desmethyl imatinib (NDI), and a degradation by-product was developed using CE–MS combined with an online concentration technique. The use of multiple reaction monitoring (MRM)–MS/MS further improved the sensitivity of this technology. Liquid–liquid extraction (LLE) using tertiary butyl methyl ether yielded high recovery and reproducibility for the pretreatment of serum samples. The recovery rate exceeded 83% for all three analytes, and was 90% for IM. To improve quantification results, a conductivity-induced online analyte concentration technique, field-amplified sample stacking (FASS), was used. The S/N ratios were improved at least 10-fold when compared with conventional capillary zone electrophoresis. The detection limits were 0.2 ng/mL for IM, 0.4 ng/mL for NDI, and 4 ng/mL for the degradation by-product. These results are superior to those previously obtained by other reported methods. The new method was validated in terms of its selectivity, intra- and interday repeatability and accuracy, and sample storage stability, following the guidelines issued by the European Medicines Agency. Considering the convenient pretreatment procedure (LLE), superior sensitivity, and fast analysis speed (<15 min), this method can be useful in the determination of imatinib levels in blood.  相似文献   
2.
A simple, sensitive, specific, and cost‐effective analytical methodology was developed for the analysis of human plasma samples spiked with imatinib by CZE with on‐line UV detection in the context of Therapeutic Drug Monitoring. Several analytical conditions such as the ionic strength (I) and the pH of the BGE composed of citric acid and ε‐amino caproic acid were studied in regards of the presence of sodium chloride (NaCl) in plasma samples (1% m/v). Computer simulations (Simul software) were used to confirm the experimental results and to understand imatinib electrophoretic behavior in the presence of NaCl. Furthermore, the advantages of adding ACN to the sample containing NaCl to combine efficient protein precipitation and on‐line CZE stacking of imatinib were demonstrated. LOD and LOQ values of 48 and 191 ng/mL were obtained from plasma sample supernatant after protein precipitation with ACN, which is much lower than mean imatinib plasma level observed for patients treated by imatinib mesylate (about 1000 ng/mL). Good linearity was obtained in the concentration range 191–5000 ng/mL (R2 > 0.997). RSD of less than 1.68% and 2.60% (n = 6) for migration times and corrected peak areas, respectively, were observed at the LOQ.  相似文献   
3.
In the present study, nonaqueous capillary electrophoretic separation of imatinib mesylate (IM) and related substances, N-(5-amino-2-methylphenyl)-4-(3-pyridyl)-2-pyrimidinamine (PYA), N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylamino)phenyl)-4-((piperazin-1-yl)methyl) benzamide (NDI) and 4-chloromethyl-N-(4-methyl-3-((4-(pyridin-3-yl) pyrimidin-2-yl) amino) phenyl) benzamide (CPB) was developed. The influential factors affecting separation, including type and concentration of the electrolyte, applied voltage, and buffer modifier were investigated. Baseline separation of the studied analytes was obtained using a buffer of 50 mM Tris and 50 mM methanesulfonic acid in methanol at a apparent pH (pH*) of 1.65. To enhance the sensitivity, large-volume sample stacking was employed for online concentration. The strongest analytical signal with a suitable separation was achieved when the injection time was 100 s. The linearity ranges of PYA and NDI were 0.100-2.50 μg mL(-1) , and that of CPB was 0.125-2.50 μg mL(-1) , with good coefficients (r(2) > 0.9948). The relative standard deviations of intra- and interday were satisfactory. Under the optimized conditions, seven batches of the synthesized samples were analyzed and CPB was detected in two batches. Owing to its simplicity, effectiveness, and low price, the developed method is promising for quality control of IM.  相似文献   
4.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   
5.
《Arabian Journal of Chemistry》2020,13(12):8935-8964
This review depicts the exposure of chitin and chitosan base multifunctional nanomaterial composites for promising applications in field of biomedical science structure, synthesis as well as potential application from a colossal angle. We elaborated critically each of the chitin and chitosan base nanomaterial with its potential application toward biomedical science. For different biomedical applications it use in form of hydrogels, microsphere, nanoparticles, aerogels, microsphere and in form of scaffold. Due to this it had been blended with different polymer such as starch, cellulose, alginate, lipid, hyaluronic acid, polyvinyl alcohol and caboxymethyl cellulose. In this review article, a comprehensive overview of combination of chitin and chitosan base nanomaterial with natural as well as synthetic polymers and their biomedical applications in biomedical field involving drug delivery system all the technical scientific issues have been addressed; highlighting the recent advancements.  相似文献   
6.
An isocratic high-performance liquid chromatographic method coupled to tandem mass spectrometry for the quantification of the revolutionary and promising anticancer agent STI-571 (tradenames Gleevec, Glivec, Imatinib) in blood plasma and red blood cells (RBCs) is described. The method involves measurement of sediment technology for RBCs and a subsequent single protein precipitation step by the addition of acetonitrile to both the RBC isolate and plasma. The sample mixture was centrifuged (10 min, 3600 g), and the supernatant filtered through a HPLC filter (0.45 microm). The analytes of interest, STI-571 and the internal standard [2H8]STI-571 were eluted on a Waters Symmetry C18 column (50x2.1 mm I.D., 3.5 microm particle size) using a methanol-0.05% ammonium acetate (72:28, v/v) mixture. STI-571 and [2H8]STI-571 were detected by electrospray tandem mass spectrometry in the positive mode, and monitored in the multiple reaction monitoring transitions 494>394 and 502<394, respectively. The lower limit of quantitation of STI-571 was 2.1 ng/ml in RBCs and 1.8 ng/ml in plasma. The recovery from both plasma and RBCs was between 65 and 70%. The method proved to be robust, allowing simultaneous quantification of STI-571 in RBCs and plasma with sufficient precision, accuracy and sensitivity and is useful in monitoring the fate of this signal transduction inhibitor in whole blood of cancer patients.  相似文献   
7.
Methyl methanesulfonate and ethyl methanesulfonate are potential genotoxic impurities in imatinib mesylate. In this work, a simple, sensitive, reliable, and fast gas chromatography with mass spectrometry method for the simultaneous determination of methyl methanesulfonate and ethyl methanesulfonate was developed and validated. Total analysis time was only 7 min. An n‐hexane/water solution was used to dissolve samples, and then extracted‐ion‐chromatogram mode was used to quantify methyl methanesulfonate and ethyl methanesulfonate. Calibration curves showed good linearity over the studied range for methyl methanesulfonate and ethyl methanesulfonate. The correlation coefficient of fit exceeded 0.999 for each impurity. The LOD and LOQ of methyl methanesulfonate and ethyl methanesulfonate were as low as 0.001 and 0.005 μg/mL, respectively, with RSDs of the peak area within 1.06–1.96%. Method accuracy was within 97.2–99.8% for methyl methanesulfonate and ethyl methanesulfonate. Therefore, this method can be used to quantify methyl methanesulfonate and ethyl methanesulfonate impurities at extremely low levels in imatinib mesylate.  相似文献   
8.
Imatinib (IMAT) is a tyrosine kinase inhibitor that has been used for the treatment of chronic myeloid leukemia (CML). Despite the efficacy of IMAT therapy, some cases of treatment resistance have been described in CML. Developing a plasma method is important since there are several studies that provided a higher correlation between IMAT plasma concentration and response to treatment. Therefore, in this investigation we validated a method by CE as an alternative, new, simple and fast electrophoretic method for IMAT determination in human plasma. The analysis was performed using a fused silica capillary (50 μm id×46.5 cm total length, 38.0 cm effective length); 50 mmol/L sodium phosphate buffer, pH 2.5, as BGE; hydrodynamic injection time of 20 s (50 mbar); voltage of 30 kV; capillary temperature of 35°C and detection at 200 nm. Plasma samples pre-treatment involved liquid-liquid extraction with methyl-tert-butyl ether as the extracting solvent. The method was linear from 0.125 to 5.00 μg/mL. The LOQ was 0.125 μg/mL. Mean absolute recovery of IMAT was 67%. The method showed to be precise and accurate with RSD and relative error values lower than 15%. Furthermore, the application of the method was performed in the analysis of plasma samples from CML patients undergoing treatment with IMAT.  相似文献   
9.

Introduction

The purpose of the study was to evaluate the efficacy of imatinib mesylate in the treatment of nephrogenic systemic fibrosis (NSF) in a rat model administered high-dose gadodiamide, erythropoietin (Epo) and intravenous iron (IV iron).

Materials and methods

The local committee for animal research approved this study. Four groups of six Hannover–Wistar rats were studied. Group A received normal saline; Group B, IV iron and Epo; Group C, gadodiamide, IV iron and Epo; and Group D, gadodiamide, IV iron, Epo and imatinib. Gadodiamide was administered at 10 mmol/kg of body weight for 5 consecutive days. Imatinib was administered at 50 mg/kg starting 3 days before gadodiamide injections and was continued for 50 days afterwards. Biopsies were taken 3 and 7 weeks after gadodiamide injection, and dermal histology was analyzed as well as gadolinium deposition as measured by inductively coupled plasma mass spectrometry. Additionally, rats treated with gadodiamide were observed for a total of 16 weeks. For comparison of cellularity, a linear mixed-effects model was used, and for metal deposition, an analysis of variance was used, which was corrected with a Tamhane correction for unequal variances.

Results

Rats treated with gadodiamide in addition to IV iron and Epo (group C) had worse skin lesions on histology (P<.001) compared to control animals (groups A and B). Treatment with imatinib resulted in decreased cellularity (group D vs C, P<.001), although there was no difference in the amount of deposited gadolinium (P>.5). Histology at 16 weeks demonstrated increased fibrosis and dermal calcifications, consistent with the clinical presentation of NSF.

Conclusions

The administration of imatinib to rats treated with high-dose gadodiamide resulted in decreased lesion severity.  相似文献   
10.
The analysis of the signal transduction inhibitor imatinib in patient tumour tissue using LC and MS/MS is described. The anticancer agent is eluted over RP-C18 within 2 mm together with its internal standard STI571-d8. Calibration curves were prepared in red blood cells (RBC). For quantitative isolation of the RBC, measurement of sediment was applied. There were no indications of signal suppression by substances originating in the biological matrix. The limit of determination in tumour tissue was in the range of those recorded for RBC and plasma. The assay is selective and sensitive, with its robustness favouring the experimental application in clinical oncology and its routine use in animal experiments. The LOD was 4.5 ng per gram in tumour tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号