首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   42篇
  国内免费   34篇
化学   368篇
力学   6篇
物理学   32篇
  2023年   2篇
  2022年   6篇
  2021年   3篇
  2020年   8篇
  2019年   7篇
  2018年   4篇
  2017年   13篇
  2016年   27篇
  2015年   36篇
  2014年   22篇
  2013年   27篇
  2012年   19篇
  2011年   58篇
  2010年   39篇
  2009年   51篇
  2008年   14篇
  2007年   13篇
  2006年   13篇
  2005年   8篇
  2004年   10篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1994年   1篇
  1993年   2篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有406条查询结果,搜索用时 19 毫秒
1.
In this work the potential of hydrophilic interaction chromatography (HILIC) is explored for the analysis of tetracycline antibiotics. The choice of the polar stationary phase is first discussed and it is demonstrated that aminopropyl stationary phases lead to higher efficiencies and peak symmetry than bare silica ones. The influence of the composition of the mobile phase is studied next : the concentration of the weaker solvent (acetonitrile), the nature and concentration of the more polar solvent (water or methanol), pH, the nature and ionic strength of the buffer. It is shown that high efficiencies are reached only with a citrate buffer that impairs the interactions with the residual silanol groups whatever the mobile phase pH is. We demonstrate that the citrate buffer strongly interacts with the cationic moiety of the aminopropyl stationary phase and thus reduces the accessibility of silanols. The separation of oxytetracycline, tetracycline and chlortetracycline is achieved in a few minutes at pH 3.5 or 5, with no peak tailing as usually observed in reversed phase liquid chromatography with an opposite elution order when compared with reversed phase liquid chromatography.  相似文献   
2.
本文通过X-射线光电子能谱(XPS)、表面接触角、表面ξ电位和血液相容性实验,研究了聚(醚-酯)多嵌段共聚物及其共混物的表面组成和性质与血液相容性的关系。实验结果表明,疏水性的PET-PTMO多嵌段共聚物的血液相容性很差,并且与表相中软段的富集量无关;当亲水性的PET-PEO多嵌段共聚物与疏水性的PET-PTMO多嵌段共聚物共混后,发现存在着一个最佳的共混比例,此时材料表面的血小板粘附量大大降低。对于共混物,表相△[C—O)/[C—O]和表面ξ电位可以较好地与血小板粘附量相关联。以上结果清楚地表明,材料表面的亲-疏水性平衡、软段深度层次分布及表面电位是影响血液相容性的重要因素。  相似文献   
3.
The combination of hydrophilic interaction liquid chromatography with electrospray mass spectrometry (HILIC-MS) has been investigated as a tool for the analysis of assorted toxins produced by cyanobacteria. Toxins examined included saxitoxin and its various analogues (1-18), anatoxin-a (ATX-a, 19), cylindrospermopsin (CYN, 20), deoxycylindrospermopsin (doCYN, 21), and microcystins-LR (22) and -RR (23). The saxitoxins could be unequivocally detected in one isocratic analysis using a TSK gel Amide-80 column eluted with 65% B, where eluent A is water and B is a 95% acetonitrile/water solution, both containing 2.0 mM ammonium formate and 3.6 mM formic acid. The analysis of ATX-a, CYN and doCYN required 75% B isocratic. Simultaneous determination of 1-21 was also possible by using gradient elution. HILIC proved to be suitable for the analysis of microcystins, but peak shape was not symmetric and it was concluded that these compounds are best analysed using existing reversed-phase methods. The HILIC-MS method was applied to the analysis of field and cultured samples of Anabaena circinalis and Cylindrospermopsis raciborskii. In general, the method proved quite robust with similar results obtained in two different laboratories using different instrumentation.  相似文献   
4.
建立了一种以亲水作用色谱分离测定表阿霉素的新方法。采用硅胶色谱柱及高极性有机溶剂水相缓冲溶液流动相。对流动相的pH、缓冲溶液的浓度及流速进行了优化,确定了以乙腈甲酸钠缓冲溶液(pH2.9)(90∶10,V/V)作为流动相的最佳条件。对优化的分离条件进行系统适应性实验,结果表明表阿霉素与有关杂质之间的分离度和拖尾因子均达到药典要求。该法具有良好的线性(相关系数0.9971~0.9991)和重复性(峰面积RSD<1.0%),方法简便实用,用于实际样品分析,结果满意。  相似文献   
5.
《Analytical letters》2012,45(14):2159-2171
A simple method was developed for the determination of hydrophilic whitening agents (ascorbyl glucoside, magnesium ascorbyl phosphate, arbutin, hydroquinone, and kojic acid) in bleaching cosmetics by high performance liquid chromatography with electrochemical detection. The samples were prepared using microdialysis and were separated within ten minutes using isocratic elution. Linear calibration was achieved for concentrations between 0.10 and 10.00 micromolar. The limits of detection were from 0.6 to 2.0 nanomolar; the recoveries were between 91.43 and 108.04 percent, and the relative standard deviation was less than 6.88 percent. This method was used to determine whitening compounds in several cosmetics with on-line microdialysis and the zero net flux method. The procedure was fast, simple, selective, and suitable for routine analysis.  相似文献   
6.
Abstract

Organic-inorganic composite gel was prepared by using PEG-modified urethane acrylate (PMUA) gel and tetraethoxysilane (TEOS). PMUA gel was prepared by the phase-inversion emulsion polymerization of PMUA emulsion. The gelation of PMUA emulsion using this method enables PMUA gel to swell with H2O, TEOS, and ethanol. Hydrolysis and condensation reaction rates of the sol-gel process are strongly influenced by the pH controlled by catalysts such as HCl and NH4OH. Additionally, the morphology on the cross section of composite and the amount of silica ingredient incorporated into the composite gel were dependent on solvent, the molar ratio of H2O to TEOS, as well as the pH value.

As the silica content increased, due to hydrogen bonds interacting between PMUA gel and SiO2, particles, the tensile strength of composites considerably increased, whereas the elongation at break decreased. The incorporation of silica ingredient in PMUA gel/silica composites was verified with FTIR/ATR and SEM. The amount of the silica component in the composite was indirectly investigated by using TGA thermal analysis.  相似文献   
7.
Hydrophilic interaction liquid chromatography is a separation technique suitable for the separation of moderately and highly polar compounds. Various stationary phases (SPs) for hydrophilic interaction liquid chromatography are commercially available. While the SPs based on the same type of ligand are available from different providers, they can display a distinct retention characteristics and separation selectivity. The current work is focused on characterization and comparison of the separation systems of two amide‐based HPLC columns from two producers, i.e. XBridge Amide column and TSK gel Amide‐80 column. Several characterization procedures (tests) were used to investigate the differences between these columns. The chromatographic behavior of selected analytes indicates that multimodal interactions are responsible for retention and separation on these columns. Multiple testing approaches were used in order to reveal subtle differences between the SPs. Both amide‐based columns showed certain differences in retention, selectivity, and plate counts. Based on the tests used in this study, we conclude that the investigated columns provide a different degree of H‐bonding interactions.  相似文献   
8.
A new hydrophilic interaction ultra‐performance LC method was established for the whole blood measurement of L‐ergothioneine. Chromatographic separation was achieved in a fairly short time, less than 4 min, on a 100 × 2.1 mm Acquity UPLC BEH HILIC 1.7 μm column with a mobile phase consisting of a mixture of 100 mmol/L ammonium acetate/ACN/water (5:85:10, v/v/v) that flowed isocratically at 0.250 mL/min. The LOD and the limit of quantification were 3.85 and 11.67 μmol/L, respectively. The method exhibited linearity in a concentration range of 15.63–1000 μmol/L (R2 > 0.999). Mean recovery was 96.34% whereas intraassay and interassay precision were 1.52 and 1.82% RSD, respectively. On the whole, the developed method is simple, fast, precise, accurate, and sensitive and may be useful for routine analyses.  相似文献   
9.
The retention behavior of a large group of analytes (35) with varied properties (pKa and logP) was studied on eight hydrophilic interaction LC columns with different surfaces, stationary phase chemistries, and types of particles. The acetonitrile content (5–95%), buffer concentration (0.5–200 mM), and pH of the mobile phase (3.8 and 6.8) were evaluated for their effects on the retention behavior. The type of stationary phase had a significant impact on the selectivity and retention time of the tested analytes. Completely different selectivity was observed on the aminopropyl stationary phase. In this study, the influence of the buffer concentration was similar for all tested columns, except for the aminopropyl stationary phase. Increasing the buffer concentration led to decreased retention times for the basic compounds and increased retention times for the acidic compounds, while the inverse behavior was observed on the aminopropyl stationary phase. The selectivity of the individual stationary phases was evaluated at pH 3.8 and 6.8. Much lower selectivity differences between the stationary phases were observed at pH 6.8 than pH 3.8. Bare silica stationary phases were used in the comparison of the particles (fused‐core and fully porous particles of 3 and 1.7 μm) and the columns provided by different manufacturers.  相似文献   
10.
Iodinated X‐ray contrast media are the most widely used pharmaceuticals for intravascular administration in X‐ray diagnostic procedures. The increasing concern of the fate of these compounds into the environment has led to the development of analytical methods to determine them. However, these methods present problems due to the polar character of these analytes. In this paper, hydrophilic interaction LC is presented as an alternative technique. The retention of iodinated X‐ray contrast media was studied in two bare silica phases with different particle designs (i.e. porous and Fused Core?) and a zwitterionic sulfoalkylbetaine phase. The effect of the most important parameters of the mobile phase was studied for each stationary phase. It was observed that optimal mobile phase conditions included buffers with a high buffering capacity. Additionally, the retention mechanisms involved were studied in order to provide some insight into the possible occurring interactions. The contributions of partition and adsorption and the effect of the temperature on the retention of analytes were evaluated on all of the stationary phases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号