首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
  国内免费   2篇
化学   41篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   7篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有41条查询结果,搜索用时 0 毫秒
1.
2.
《中国化学快报》2020,31(9):2483-2486
Structural and functional biomimicking of the active site of [NiFe]-hydrogenases can provide helpful hints for designing bioinspired catalysts to replace the expensive noble metal catalysts for H2 generation and uptake. Treatment of dianion [Ni(phma)]2− [H4phma = N,N'-1,2-phenylenebis(2-mercaptoacetamide)] with [NiCl2(dppp)] (dppp = bis(diphenylphosphino)propane) yielded a dinickel product [Ni(phma)(μ-S,S')Ni(dppp)] (1) as the model complex relevant to the active site of [NiFe]-H2ases. The structure of complex 1 has been characterized by single-crystal X-ray analysis. From cyclic voltammetry and controlled potential electrolysis studies, complex 1 was found to be a moderate electrocatalyst for the H2-evoluting reaction using ClCH2COOH as the proton source.  相似文献   
3.
Alanine synthesis by reductive amination of pyruvate was performed by the combination of NADH regeneration system and alanine dehydrogenase (AlaDH). The conversion of pyruvate to alanine was 99% after 1 h. Leucine synthesis was also carried out by the combination of NADH regeneration system and leucine dehydrogenase (LeuDH). The conversion of 4-methyl-2-oxovalerate to leucine was 60% after 1.5 h.  相似文献   
4.
Glutamate synthesis by reductive amination of 2-oxoglutarate was performed by the combination of NADH regeneration system and glutamate dehydrogenase (GluDH). The conversion of 2-oxoglutamate to glutamate was 98% after 3 h, and the turnover number of NAD+was 17.  相似文献   
5.
Recent developments in active site structure determination of the three types of hydrogenase enzymes are described. Aspects of recent studies using model complexes relevant to the structure and function of the enzymes are reviewed.  相似文献   
6.
7.
The direct bioelectrocatalysis by an NAD(P)‐reducing hydrogenase is reported for the first time. In contrast to previous attempts to involve similar enzymes in bioelectrocatalysis [1–4], which were in fact unsuccessful, in our report an effective electrocatalysis by Pyrococcus furiosus hydrogenase is convincingly shown by (i) achievement of the hydrogen equilibrium potential and (ii) a high current of hydrogen oxidation (0.3 mA cm?2 at 100 mV overpotential and at 75 °C). The latter is just a few times lower compared to enzyme electrodes based on NAD(P)‐independent hydrogenases.  相似文献   
8.
Hydrogenases are H2 converting enzymes that harbor catalytic cofactors in which iron (Fe) ions are coordinated by biologically unusual carbon monoxide (CO) and cyanide (CN) ligands. Extrinsic CO and CN, however, inhibit hydrogenases. The mechanism by which CN binds to [FeFe]-hydrogenases is not known. Here, we obtained crystal structures of the CN-treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum. The high resolution of 1.39 Å allowed us to distinguish intrinsic CN and CO ligands and to show that extrinsic CN binds to the open coordination site of the cofactor where CO is known to bind. In contrast to other inhibitors, CN treated crystals show conformational changes of conserved residues within the proton transfer pathway which could allow a direct proton transfer between E279 and S319. This configuration has been proposed to be vital for efficient proton transfer, but has never been observed structurally.  相似文献   
9.
The sulfur-rich iron carbonyl dimer complexes [Fe(CO)2(S′SiS2)]2 (2), and [Fe(CO)(S′SiS2)]2 (3) have been prepared. The [2Fe-2S] cores of the new complexes are planar. The binding mode of the tridentate sulfur ligand in complex 2 is facial with a S(thiolate)-Fe-S(thiolate) angle of 92°, while in complex 3, the S′SiS2 ligand binds the metal with a S(thiolate)-M-S(thiolate) angle of 120°. The Fe-Fe distance is reduced from 3.45 Å in complex 2 to 2.78 Å in the 32 electron dimer complex 3. Complexes 2 and 3 are at equilibrium in solution and can be readily interconverted by addition or removal of CO.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号