首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   2篇
  国内免费   6篇
化学   56篇
晶体学   1篇
力学   1篇
物理学   22篇
  2020年   1篇
  2018年   2篇
  2017年   6篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   10篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1994年   4篇
  1993年   2篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
  1980年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
Traditional treatment methods used to clean-up heavy metal contamination of soils and waters are cost intensive whereas more cost effective methods need to be developed. The use of plant materials to remediate heavy contamination has been studied for the past two decades. This technique has shown much promise for many of the common heavy metal contaminants, but few studies have focused on the lanthanide series elements. By investigating the binding and interactions of the lanthanide elements to alfalfa biomass, a more complete understanding of the binding mechanisms and the interactions of heavy metals with biomaterials can be obtained. Different chemical functional groups on the alfalfa biomass, carboxyl, amino, sulfur, and ester groups, were modified to investigate the binding mechanisms of erbium(III) and holmium(III). Batch experiments were performed with native and chemically modified alfalfa biomass suggesting that the carboxyl groups play a major role in the binding of erbium(III) and holmium(III) to the alfalfa biomass. In addition, X-ray absorption spectroscopy (XAS) studies corroborated the data obtained from the batch experiments.  相似文献   
2.
The oxonitridoalumosilicates (so‐called sialons) MLn[Si4?xAlxOxN7?x] with M = Eu, Sr, Ba and Ln =Ho, Er, Tm, Yb were obtained by the reaction of the respective lanthanoid metal, the alkaline earth carbonates or europium carbonate, resp., AlN, “Si(NH)2” and MCl2 as a flux in a radiofrequency furnace at temperatures around 2100 °C. The compounds MLn[Si4?xAlxOxN7?x] are relevant for the investigation of substitutional effects on the materials properties due to their ability of tolerating a comparatively large phase width up to x ≈ 2.0(5). The crystal structures of the twelve compounds were refined from X‐ray single crystal data and X‐ray powder data and are found to be isotypic to the MYb[Si4N7] structure type. The compounds crystallize in space group P63mc (no. 186, hexagonal) and are made up of chains of so‐called starlike units [N[4](SiN3)4] or [N[4]((Si,Al)(O,N)3)4], respectively. These units are formed by four (Si,Al)(N/O)4 tetrahedra sharing a common central nitrogen atom. The structure refinement was performed utilizing an O/N‐distribution model according to Paulings rules, i.e. nitrogen was positioned on the four‐fold bridging site and nitrogen and oxygen were distributed equally on both of the two‐fold bridging sites, resulting in charge neutrality of the compound. The Si and Al atoms were distributed equally on their two crystallographic sites, referring to their elemental proportion in the compound, due to being poorly distinguishable by X‐ray methods. The chemical compositions of the compounds were derived from electron probe micro analyses (EPMA).  相似文献   
3.
本文用导数分光光度沾测定了镧系(Pr~(3+))、Ho~(3+))与8-羟基喹啉-5-磺酸及氯化十六烷基吡啶体系的零阶及三阶导数吸收光谱,并计算了它们的摩尔吸光系数及摩尔导数吸光系数。提出了一个混合稀土中直接测定镨的方法,该方法的准确度及选择性较好。  相似文献   
4.
The Benzonitrile Adducts [Ho2Cl6(PhCN)6] and equation/tex2gif-stack-4.gif [HoCl3(PhCN)]: Syntheses, Crystal Structures, FarIR and MIR Spectroscopy Investigations Transparent light pink crystals of the compound [Ho2Cl6(PhCN)6] were obtained by the reaction of a mixture of HoCl3 and AlCl3 with benzonitrile at 150μ °C. Transparent pink crystals of the compound equation/tex2gif-stack-5.gif[HoCl3(PhCN)] were obtained by the same reaction under solvothermal conditions at 200μ °C. [Ho2Cl6(PhCN)6] exhibits a dimeric structure of linked pentagonal bipyramids whereas equation/tex2gif-stack-6.gif[HoCl3(PhCN)] forms a layer structure of trigonal Cl prisms around Ho, linked via corners and separated by coordinating PhCN molecules.  相似文献   
5.
HoClTe2O5: A Telluriumdioxide‐rich Holmium(III) Chloride Oxotellurate(IV) While attempting to synthesize anionically derivatized holmium oxotellurates by reacting holmium chloride (HoCl3) with tellurium oxide (TeO3; molar ratio 1 : 3, 800°C 10 d) in evacuated silica ampoules, transparent, greenish yellow and coarse single crystals of holmium(III) chloride oxotellurate(IV) HoClTe2O5 (triclinic, P1; a = 762.07(6), b = 796.79(6), c = 1010.36(8) pm, α = 100.987(4), ß = 99.358(4), γ = 91.719(4)°; Z = 4) were obtained. The crystal structure contains eightfold coordinated (Ho1)3+ (only surrounded by oxygen atoms) and sevenfold coordinated (Ho2)3+ cations (surrounded by one chloride and six oxide anions). Each sort of holmium polyhedra convenes independently to chains along [100] by edge‐sharing which again combine alternately via O6 and O9 to form 2{[Ho2O10(Cl1)]15—} layers parallel (001). Each of the four crystallographically different Te4+ cations are surrounded by three close oxygen atoms (d(Te—O) = 188 — 195 pm) and always one more situated further away. The stereochemical activity of the non‐bonding electron pairs (“lone pairs”) leads to ψ1‐trigonal bipyramidal coordination figures. The ψ1‐tetrahedral [TeO3]2— basic units form discrete [Te2O5]2— doubles with ecliptic conformation which are arranged in a fish‐bone pattern parallel to (001) on both sides of the 2{[Ho2O10Cl]15—} layers. The coherence of the 2{[Ho2(Cl1)Te4O10]+} layers is exclusively maintained via Cl2—Te1 contacts with an extraordinary long distance of 335 pm. As (Cl1) belongs to the coordination sphere of (Ho2)3+ and (Cl2) is only surrounded by Te4+, the compound should be correctly named holmium(III) chloride oxochlorotellurate(IV) Ho2Cl[Te4O10Cl] (Z = 2).  相似文献   
6.
7.
The title compound (13,27-dimethyl-3,6,9,17,20,23-hexaazatricyclo-[23.3.1.111,15]-triaconta- 1 (29),2,9,11,13,15(30), 16,23,25,27-decaene-29,30-diol-N3,N6,N9,O29,O30)-bis(nitrato-O,O')-holmium(Ⅲ) nitrate hydrate has been prepared and characterized by elemental analysis, infrared spectra, and electrospray mass spectra. Its crystal and molecular structures were determined by X-ray diffraction methods. The crystal crystallizes in the monoclinic system, space group C2/c with a = 23.737(12), b = 14.237(7), c = 19.801(10) (A), β = 91.36(1)°, Mr = 831.57, V = 6690(6) (A)3, Z = 8,Dc = 1.651 g/cma, F(000) = 3344, R = 0.0482 and wR = 0.0923. The holmium ion is located in one of the compartments of the macrocyclic ligand and presents a distorted tricapped trigonal prismatic coordination geometry. The macrocycle is coordinated with two oxygen and three nitrogen atoms.Two nitrates are chelated in the opposite positions of the macrocycle, and the third one is ionic.  相似文献   
8.
纳米NaYF4:Yb,Ho上转换荧光粉的合成及其性质研究   总被引:8,自引:0,他引:8  
以EDTA为螯合剂,采用络合共沉淀法合成了纳米级镱、钬共掺杂的氟化钇钠上转换荧光材料.所合成的纳米材料颗粒均匀,分散性好.通过调节EDTA的加入量,可在41~148nm范围内调控纳米颗粒的大小.在980nm红外激光器照射下,肉眼可观察到明亮的上转换荧光,对发光机理进行了探讨.  相似文献   
9.
AimNeutron-activated holmium-166 (166Ho) is an excellent radionuclide for internal radiation therapy (Eβmax = 1.84 MeV) with an appropriate half-life (26.8 h), which emits photons (81 keV, 6.2%) suitable to be detected by gamma cameras. Preparing and injecting radiopharmaceuticals containing beta/gamma emitting holmium-166 implies a risk of exceeding the upper limit for skin and hand radiation equivalent doses (500 mSv/an). This study was aimed to estimate the whole body and finger exposure for staff responsible for dose preparation, dose dispensing, and dose injection of holmium-166 therapy.MethodsTo measure the finger dose from external exposure, all staff members wore TLD dosimeters. Personal dose equivalents Hp(10) were measured using electronic personal dosimeters (EPD MK2, Thermo Fischer Scientific) placed on the left side of the chest. During our study, staff members administered more than 40 166Ho-based therapies for preclinical trial. Appropriate radiation safety procedures and shielding were applied at each stage.ResultsIn this study, the whole body doses were 2.80 ± 1.56 nSv MBq−1 for one 166Ho-therapy preparation/formulation, and 2.68 ± 1.70 nSv MBq−1 for one intravenous injection. Maximum finger doses were 2.9 ± 0.2 μSv MBq−1 and 2.5 ± 0.3 μSv MBq−1 for preparation and injection, respectively (activities injected: 72 ± 3 MBq).ConclusionExtrapolated annual doses from 300 166Ho radionuclide therapies were lower than the annual limit doses for skin and the whole body, 500 mSv and 20 mSv, respectively, reported in the European Directive EURATOM 96/29 when applying appropriate radiation protection standards. However, these doses have to be added to other diagnostic or therapeutic protocols, performed in preclinical facilities.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号