首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   4篇
力学   5篇
物理学   10篇
  2023年   2篇
  2019年   1篇
  2016年   2篇
  2013年   1篇
  2011年   2篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1988年   1篇
排序方式: 共有19条查询结果,搜索用时 250 毫秒
1.
We use experimental results of direct current and low signal impedance spectroscopy to investigate the conduction mechanism in organic semiconductor ZnPc. The experimental results demonstrate an increase in current and holes mobility by the introduction of a thin MoO3 film at the ITO/ZnPc interface. This significantly improves the device performance. The improvement is explained in terms of the reduction in the effective barrier for charge transfer from ZnPc to ITO.  相似文献   
2.
Synthesis of highly active and durable oxygen evolution reaction (OER) catalysts applied in acidic water electrolysis remains a grand challenge. Here, we construct a type of high-loading iridium single atom catalysts with tunable d-band holes character (h-HL−Ir SACs, ∼17.2 wt % Ir) realized in the early OER operation stages. The in situ X-ray absorption spectroscopy reveals that the quantity of the d-band holes of Ir active sites can be fast increased by 0.56 unit from the open circuit to a low working potential of 1.35 V. More remarkably, in situ synchrotron infrared and Raman spectroscopies demonstrate the quick accumulation of *OOH and *OH intermediates over holes-modulated Ir sites in the early reaction voltages, achieving a rapid OER kinetics. As a result, this well-designed h-HL−Ir SACs exhibits superior performance for acidic OER with overpotentials of 216 mV @10 mA cm−2 and 259 mV @100 mA cm−2, corresponding to a small Tafel slope of 43 mV dec−1. The activity of catalyst shows no evident attenuation after 60 h operation in acidic environment. This work provides some useful hints for the design of superior acidic OER catalysts.  相似文献   
3.
The state of stress and strain of previously loaded viscoelastic bodies with holes originating in them, successively or simultaneously, is analyzed under finite plane deformations. The problem statement and solution are based on the theory of repeatedly superimposed large deformations. The material mechanical properties are described using integral relations of the convolution type over time with a weakly singular kernel. The problem solving is based on the finite-element method. To calculate the integral of the convolution type, a recurrence formula is used that can be obtained by approximating the initial kernel with a linear combination of exponential functions (the truncated Prony’s series). The nonlinear effects and the effect of the interaction between holes on the stress concentration are analyzed. For the dynamic problems, the results for incompressible and weakly compressible materials are compared.  相似文献   
4.
Automation is conquering new fields on a daily basis. Aiming for faster and more reliable products, industrials as well as researchers are oriented into automation. Non-destructive testing as well as defect quantification is not an exception. In fact, decisions with minimum allowable error are sought in real-time when facing any potential defect. In this work, we suggest a comprehensive method based on model order reduction techniques to judge if a structure shall be salvaged. The real-time decision is based on multidimensional parametric simulation, performed offline, using the Proper Generalized Decomposition (PGD). The PGD is a model order reduction technique that allows circumventing the curse of dimensionality by using domain decomposition. Therefore, the 6D simulation illustrated in this paper is performed within a few minutes on a standard laptop. Later on, a stress concentration manifold is built and used online for decision-making. The manifold is validated on a few selected solutions solved analytically using an analytical procedure. The aforementioned procedure is developed, in this paper, to calculate the tangential stress around circular holes of different sizes, in an infinite isotropic plate containing any number of holes and subjected to in-plane pressure loading at the tip of the infinite plate. The procedure is based on determining two Muskhelishvili complex potentials in terms of complex Fourier series, and applying the Schwartz alternating method repeatedly until the boundary conditions on the contour of every hole are satisfied.  相似文献   
5.
Stress resultants and moments around the holes of infinite unsymmetrical composite laminates under remote uniform loading are analyzed using the complex potential approach developed by Chen and Shen [Mech. Res. Commun. 28 (4) (2001) 423; 28 (5) (2001) 513]. In the analysis, the authors’ previous work has been modified to determine the complex constants Bk appeared in the complex potential functions of Chen and Shen [Mech. Res. Commun. 28 (5) (2001) 513]. Herein Bk are the unknown quantities related to the remote loading conditions. The effect of bending extension coupling has been discussed for several laminates such as [0/90]T, [45/−45]T and [0/90/45/−45]nT. Results indicates that the coupling between bending and extension significantly affects the stresses around the hole of an unsymmetrical laminate containing one sub-laminate only. Such the effect rapidly decreases as the number of the sub-laminates increases. The results confirm the validity of the developed complex potential approach.  相似文献   
6.
This paper experimentally investigates the holes interaction effect on the sound absorption coefficient of micro-perforated panels under high and medium sound levels. The theoretical formulations are based on a semi-empirical approach and the use of Fok’s function to model the acoustic surface impedance. For the high sound level regime, an empirical power law involving three coefficients is adapted. It is shown theoretically and experimentally that these coefficients can lead to optimized absorption performance and particularly, a formula relating the critical Reynolds number (Reynolds number value after which the absorption coefficient decreases with the increase of sound level) and the center-to-center distance between the perforations is derived. It is demonstrated that the first coefficient of the nonlinear acoustic resistance strongly depends on the separation distance between the apertures and decreases with a decrease of this latter distance. Analysis of the data reveals the fact that even with Holes Interaction Effect (HIE), the nonlinear reactance dependence on velocity is still very low compared to the resistance-velocity dependence. Four perforated panels of 1.5 mm thickness with different separation distances between the holes (from widely to closely separation) were built and tested. Experimental results performed with an impedance tube are compared with the described model for HIE. To test the dependence of the coefficients on frequency, the experiments are carried out for two different excitation frequencies (292 Hz and 506 Hz). The results can be used for designing optimal perforated panels for ducts, silencers and for the automotive industry.  相似文献   
7.
邵道勇  罗杭建 《应用声学》2016,24(9):244-246, 273
针对以往核燃料棒密封焊接时无法精细调整钨极距离、实时观测焊室内部情况以及保存焊接图像的弊端,设计了一套基于LABVIEW的核燃料棒焊接图像采集与处理系统;不同于传统的投影方法,系统利用两个数字相机获取焊室内部图像及焊接过程视频,通过图像处理分析钨极尖端与核燃料棒端塞的极距、对中情况和烧损程度等,并将焊接前后图像、极距保存到棒料焊接的相应记录中;多次焊接试验表明,图像系统能够稳定清晰地获取焊室内的图像,极距和对中情况分析准确可靠;根据实验结果,总结了钨极烧损的外观特点,并探讨了适合本焊接设备的极距。  相似文献   
8.
It is generally believed that the laws of thermodynamics govern superconductivity as an equilibrium state of matter, and hence that the normal-superconductor transition in a magnetic field is reversible under ideal conditions. Because eddy currents are generated during the transition as the magnetic flux changes, the transition has to proceed infinitely slowly to generate no entropy. Experiments showed that to a high degree of accuracy no entropy was generated in these transitions. However, in this paper we point out that for the length of times over which these experiments extended, a much higher degree of irreversibility due to decay of eddy currents should have been detected than was actually observed. We also point out that within the conventional theory of superconductivity no explanation exists for why no Joule heat is generated in the superconductor to normal transition when the supercurrent stops. In addition we point out that within the conventional theory of superconductivity no mechanism exists for the transfer of momentum between the supercurrent and the body as a whole, which is necessary to ensure that the transition in the presence of a magnetic field respects momentum conservation. We propose a solution to all these questions based on the alternative theory of hole superconductivity. The theory proposes that in the normal-superconductor transition there is a flow and backflow of charge in direction perpendicular to the phase boundary when the phase boundary moves. We show that this flow and backflow explains the absence of Joule heat generated by Faraday eddy currents, the absence of Joule heat generated in the process of the supercurrent stopping, and the reversible transfer of momentum between the supercurrent and the body, provided the current carriers in the normal state are holes.  相似文献   
9.
10.
We have studied the charging of InAs quantum dots with holes in perpendicular fields up to 16 T by capacitance—voltage spectroscopy. The first two charging peaks show almost no shift with magnetic field which is consistent with the filling of a twofold degenerate s-like state with no orbital angular momentum. The next four charging peaks shift towards lower and higher energy in an alternating fashion. Peaks 5 and 6 shift approximately twice as strong as peaks 3 and 4. This behavior cannot be explained by the charging of a fourfold degenerate p-shell according to Hund′s first rule. We speculate that the p-shell is not completely filled before the filling of the d-shell starts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号