首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
化学   5篇
物理学   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2007年   1篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 312 毫秒
1
1.
合成了两类分别基于芘和蒽封端的芴-芳胺衍生物(FAn,FPy)的新型可溶液加工蓝色发光分子,两种材料均溶于常规的有机溶剂,并且可以旋涂成膜. 通过紫外-可见光谱和荧光光谱对其在溶液中和固态薄膜下的光学性能进行了表征,发现这两类分子在固态下发射峰分别位于449和465 nm,属于蓝色发光材料. 并通过循环伏安法表征了其电化学性能,计算得出FAn和FPy的最高占据分子轨道(HOMO)能级分别为-5.37 和-5.36eV. 结果表明N-己基二苯胺的引入有效阻止了分子在固态下的平面堆积,抑制了长波发射,并且提高了分子HOMO能级,改善了空穴注入能力. 差示扫描量热法(DSC)和热重分析(TGA)测试表明这两类化合物均显示出良好的热稳定性,其中FAn的玻璃化转变温度和热分解温度分别达到了207和439 ℃. 良好的性能使得这两类材料成为一种潜在的可溶液加工的蓝光材料.  相似文献   
2.
Two blue-emitting oligomers, namely FDPA1 and FDPA2 containing 9,10-diphenylanthracene core end-capped with triphenylamine-substituted fluorene has been synthesized and characterized. The spiro-configuration end-capping groups imparts two compounds with pronounced morphological stability (Tg > 185 °C, Td > 420 °C) and excellent hole injection ability (EHOMO > −5.27 eV) with the advantageous optical characteristics of corresponding core. Scanning electron microscope (SEM) and X-ray diffraction (XRD) reveal that the two oligomers form excellent amorphous films and possess good morphological stability after annealing.  相似文献   
3.
Two new functional polyacetylenes bearing carbazole group as pendant,poly {3-[(4-ethynylstyryl)-N-butyl]carba/ole}(P1) and poly{3-[4-(prop-2-ynyloxy)phenyl-N-butyl]carbazole}(P2),were prepared using[Rh(nbd)Cl)2-Et3N as catalyst.The polymers were soluble in common organic solvents such as CHCl3 and THK Their structures and properties were characterized and evaluated with FTIR,1H NMR,UV,TGA,GPC,and CV,respectively.The results show that the polymers possess high thermal stability and well hole-injection property.  相似文献   
4.
Polymeric light-emitting diodes (PLEDs) using high-performance hole-transport polyurethanes (PUs) have been fabricated. The PUs were prepared from the condensation polymerization of (EE)-1,4-bis(2-hydroxystyryl)benzene, an oligo para-phenylene-(E)-vinylene (OPV) unit, with toluene diisocyanate (TDI), isophorone diisocyanate (IPDI) or dicyclohexylmethane 4,4′-diisocyanate (H12MDI), respectively. The condensation polymerization was end-capped with 4-tert-butylphenol as the terminal group. The PLED having the PU layer inserted between PEDOT:PSS (HIL) and MEH-PPV (EML) demonstrated superior current efficiency and low turn-on voltage when comparing to the reference devices of ITO/MEH-PPV(50 nm)/Ca(10 nm)/Ag(100 nm) as well as ITO/PEDOT:PSS(30 nm)/MEH-PPV(50 nm)/Ca(10 nm)/Ag(100 nm). In particularly, the best device performance was realized with the PU of OPV-IPDI as the hole-transport layer, resulting 53 times and 2.72 times of current efficiency enhancement as well as 1.5 V and 1 V voltage reduction of the turn-on voltage, respectively, when compared against the reference devices. Besides, our experiments also showed that the PU polymer could also be applied for flexible PLED with similar performance enhancement. Based on the promising results, we concluded that OPV-IPDI was a good hole-transport material for light-emitting diode application.  相似文献   
5.
Two novel potential solution-processed blue fluorescent emitters composed of a core fluorenediphenylamine unit capped with either anthracene (FAn) or pyrene (FPy) were synthesized and characterized. They were both soluble in common organic solvents and solutions gave smooth films after spin coating. Their optical properties in solution and in the film were investigated by UV-visible and photoluminescence (PL) spectroscopy. The PL emission maximum of FAn and FPy in the film state were found to be 449 and 465 nm, respectively. The electrochemical properties of the as-prepared samples were studied by cyclic voltammetry. The estimated highest occupied molecular orbital (HOMO) energy levels were -5.37 and -5.36 eV for FAn and FPy, respectively. These results indicate that the introduction of diphenylamine effectively prevents plane stacking of the molecules in the solid state, which suppresses the formation of long-wavelength aggregates, and the high HOMO levels enhance the hole-injection ability of the compounds. The results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) indicate that the two materials have excellent thermal stability with the glass transition temperature of FAn reaching 207 ℃ and the thermal decomposition temperature as high as 439 ℃. The good performance of the fluorescent emitters makes them promising candidates as solution-processed blue organic light-emitting diodes.  相似文献   
6.
A series of fluorene derivatives containing a triphenylamine (TPA) derivative core and two oligofluorene peripheries was effectively synthesized. These compounds are fluorescent and emission color ranges from blue to red. The spiro-skeleton molecular structure leads to excellent glass transition temperatures and weak intermolecular interactions. Simultaneously, novel nonplanar triphenylamine-centered oligofluorenes solve the spectral stability problem and hole-injection issue for fluorene-based materials. The photophysical properties of 6 and 7 are investigated in solvents with different polarities, which reveal the existence of the Charge Transfer (CT) excited-state in these molecules.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号