首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
化学   28篇
物理学   2篇
  2020年   7篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2013年   1篇
  2012年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The construction of stable covalent organic frameworks (COFs) for various applications is highly desirable. Herein, we report the synthesis of a novel two‐dimensional (2D) porphyrin‐based sp2 carbon‐conjugated COF (Por‐sp2c‐COF), which adopts an eclipsed AA stacking structure with a Brunauer—Emmett—Teller surface area of 689 m2 g?1. Owing to the C=C linkages, Por‐sp2c‐COF shows a high chemical stability under various conditions, even under harsh conditions such as 9 m HCl and 9 m NaOH solutions. Interestingly, Por‐sp2c‐COF can be used as a metal‐free heterogeneous photocatalyst for the visible‐light‐induced aerobic oxidation of amines to imines. More importantly, in comparison to imine‐linked Por‐COF, the inherent structure of Por‐sp2c‐COF equips it with several advantages as a photocatalyst, including reusability and high photocatalytic performance. This clearly demonstrates that sp2 carbon‐linked 2D COFs can provide an interesting platform for heterogeneous photocatalysis.  相似文献   
6.
Two‐dimensional conjugated aromatic networks (CAN) with ultra‐thin conjugated layers (ca. 3.5 nm) and high single‐metal‐atom‐site density (mass content of 10.7 wt %, and 0.73 metal atoms per nm2) are prepared via a facile pyrolysis‐free route involving a one‐step ball milling of the solid‐phase‐synthesized polyphthalocyanine. These materials display outstanding oxygen reduction reaction (ORR) mass activity of 47 mA mgcat.?1 represents 1.3‐ and 6.4‐fold enhancements compared to Pt and Pt/C in benchmark Pt/C, respectively. Moreover, the primary Zn‐air batteries constructed with CAN as an air electrode demonstrate a mass/volume power density of 880 W gcat.?1/615 W cmcat.?3 and stable long‐term operation for 100 h. This strategy offers a new way to design high‐performance electrocatalysts with atomic precision for use in other energy‐storage and conversion applications.  相似文献   
7.
8.
9.
The structural stability of cathode materials during electrochemical reactions, in particular, under high-rate discharge, is pertinent to the design and development of new electrode materials. This study investigates the structural inhomogeneity that develops within a single LiNi0.835Co0.15Al0.015O2 (NCA83) particle during a fast discharging process under different cutoff voltages. Some of the NCA83 particles discharged from a high cutoff voltage (4.8 V) developed surface areas in which the layered structure was recovered, although the interiors retained the degraded spinel structure. These micro- and nano-scale structural inversions from high cutoff voltage seem highly correlated with structural evolutions in the initial charged state, and may ultimately degrade the cycling stability. This study advances understanding of the structural inhomogeneity within primary particles during various electrochemical processes and may facilitate the development of new Ni-rich cathode materials.  相似文献   
10.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co-doped carbon dots (F,N-doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N-doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue-shift of the fluorescence emission from 586 nm to 550 nm. F,N-doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N-doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure-triggered aggregation-induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high-pressure conditions and enhances their anti-photobleaching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号