首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   2篇
  国内免费   15篇
化学   72篇
综合类   1篇
物理学   6篇
  2023年   3篇
  2022年   7篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   6篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
1.
赵曦  张士磊  段文虎 《有机化学》2007,27(12):1509-1515
报道了一条组蛋白去乙酰化酶抑制剂曲古抑菌素A的有效合成路线. 通过L-脯氨酸催化对硝基苯甲醛与丙醛的羟醛缩合反应, 高立体选择性地构建了目标分子的手性中心, 羟醛缩合产物的ee值大于99%, antisyn=16∶1. 随后的合成过程中无消旋化现象, 合成的曲古抑菌素A是单一R型异构体, ee值大于99%.  相似文献   
2.
Brain tumors are the most widespread malignancies in children around the world. Chemotherapy plays a critical role in the treatment of these tumors. Although the current chemotherapy process has a remarkable outcome for a certain subtype of brain tumor, improving patient survival is still a major challenge. Further intensive treatment with conventional non-specific chemotherapy could cause additional adverse reactions without significant advancement in survival. Recently, patient derived brain tumor, xenograft, and whole genome analysis using deep sequencing technology has made a significant contribution to our understanding of cancer treatment. This realization has changed the focus to new agents, targeting the molecular pathways that are critical to tumor survival or proliferation. Thus, many novel drugs targeting epigenetic regulators or tyrosine kinase have been developed. These selective drugs may have less toxicity in normal cells and are expected to be more effective than non-specific chemotherapeutics. This review will summarize the latest novel targets and corresponding candidate drugs, which are promising chemotherapy for brain tumors according to the biological insights.  相似文献   
3.
4.
Epigenetic alterations found in all human cancers are promising targets for anticancer therapy. In this sense, histone deacetylase inhibitors (HDACIs) are interesting anticancer agents that play an important role in the epigenetic regulation of cancer cells. Here, we report 15 novel hydroxamic acid-based histone deacetylase inhibitors with quinazolinone core structures. Five compounds exhibited antiproliferative activity with IC50 values of 3.4–37.8 µM. Compound 8 with a 2-mercaptoquinazolinone cap moiety displayed the highest antiproliferative efficacy against MCF-7 cells. For the HDAC6 target selectivity study, compound 8 displayed an IC50 value of 2.3 µM, which is 29.3 times higher than those of HDAC3, HDAC4, HDAC8, and HDAC11. Western blot assay proved that compound 8 strongly inhibited tubulin acetylation, a substrate of HDAC6. Compound 8 also displayed stronger inhibition activity against HDAC11 than the control drug Belinostat. The inhibitory mechanism of action of compound 8 on HDAC enzymes was then explored using molecular docking study. The data revealed a high binding affinity (−7.92 kcal/mol) of compound 8 toward HDAC6. In addition, dock pose analysis also proved that compound 8 might serve as a potent inhibitor of HDAC11.  相似文献   
5.
乙酰鸟氨酸脱乙酰酶固定化细胞拆分D,L-缬氨酸   总被引:3,自引:1,他引:3  
报道了一种利用具有乙酰鸟氨酸脱乙酰酶活性的固定化细胞拆分D,L-缬氨酸的新方法. 该酶促反应最适条件: pH=6, 反应温度50 ℃, 底物N-乙酰-D,L-缬氨酸浓度200 mmol/L, 固定化细胞用量0.2 g/mL(或100 U/mL). 0.1 mmol/L CoCl2条件对该酶促反应有显著的激活作用. 在以上条件下反应2~3 h, 测得产物L-缬氨酸浓度95 mmol/L. 该固定化细胞连续10次使用, 平均转化率为90.8%(以N-乙酰-L-缬氨酸计), 显示出了良好的工业化应用前景.  相似文献   
6.
New monolithic HPLC columns were prepared by γ-radiation-triggered polymerization of hexyl methacrylate and ethylene glycol dimethacrylate monomers in the presence of porogenic solvents. Polymerization was carried out directly within capillary (250-200 μm I.D.) and nano (100-75 μm I.D.) fused-silica tubes yielding highly efficient columns for cap(nano)-LC applications. The columns were applied in the complete separation of core (H2A, H2B, H3, and H4) and linker (H1) histones under gradient elution with UV and/or electrospray ionization (ESI) ion trap mass spectrometry (MS) detections. Large selectivity towards H1, H2A-1, H2A-2, H2B, H3-1, H3-2 and H4 histones and complete separation were obtained within 8 min time windows, using fast gradients and very high linear flow velocities, up to 11 mm/s for high throughput applications. The method developed was the basis of a simple and efficient protocol for the evaluation of post-translational modifications (PTMs) of histones from NCI-H460 human non-small-cell lung cancer (NSCLC) and HCT-116 human colorectal carcinoma cells. The study was extended to monitoring the level of histone acetylation after inhibition of Histone DeACetylase (HDAC) enzymes with suberoylanilide hydroxamic acid (SAHA), the first HDAC inhibitor approved by the FDA for cancer therapy. Attractive features of our cap(nano)-LC/MS approach are the short analysis time, the minute amount of sample required to complete the whole procedure and the stability of the polymethacrylate-based columns. A lab-made software package ClustMass was ad hoc developed and used to elaborate deconvoluted mass spectral data (aligning, averaging, clustering) and calculate the potency of HDAC inhibitors, expressed through a Relative half maximal Inhibitory Concentration parameter, namely R_IC(50) and an averaged acetylation degree.  相似文献   
7.
8.
A series of thiol-based indeno[1,2-c]pyrazoles and benzoindazole compounds was designed and synthesized according to the structural specificity of histone deacetylase VI(HDAC6) and the structural characteristics of HDAC inhibitors. The inhibitory activities of the target compounds against HDAC6 and HDAC1 were screened by fluorescence analysis. Most of the target compounds showed moderate inhibitory activity against HDAC6(IC50=44—598 nmol/L). Among them, compound A-4 displayed the highest selectivity against HDAC6 and similar inhibitory activity(IC50=44 nmol/L) to that of the positive drug SAHA(IC50=41 nmol/L) against HDAC6.  相似文献   
9.
基于24个目前已知的氧肟酸类组蛋白去乙酰化酶抑制剂,我们运用Catalyst软件建立了一个三维药效团模型。其中,最好的药效团模型1,包含了四个化学特征(一个氢键供体,一个芳环和两个疏水基),相关系数达到0.946,并由另外20个化合物进行了测试验证。我们第一次特征性描述了组蛋白去乙酰化酶的帽子(CAP)部分。我们的研究结果对于设计全新组蛋白去乙酰化酶抑制剂具有很好的指导作用。  相似文献   
10.
Histone deacetylases (HDACs) remove acetyl groups from acetylated lysine residues and have a large variety of substrates and interaction partners. Therefore, it is not surprising that HDACs are involved in many diseases. Most inhibitors of zinc-dependent HDACs (HDACis) including approved drugs contain a hydroxamate as a zinc-binding group (ZBG), which is by far the biggest contributor to affinity, while chemical variation of the residual molecule is exploited to create more or less selectivity against HDAC isozymes or other metalloproteins. Hydroxamates have a propensity for nonspecificity and have recently come under considerable suspicion because of potential mutagenicity. Therefore, there are significant concerns when applying hydroxamate-containing compounds as therapeutics in chronic diseases beyond oncology due to unwanted toxic side effects. In the last years, several alternative ZBGs have been developed, which can replace the critical hydroxamate group in HDACis, while preserving high potency. Moreover, these compounds can be developed into highly selective inhibitors. This review aims at providing an overview of the progress in the field of non-hydroxamic HDACis in the time period from 2015 to present. Formally, ZBGs are clustered according to their binding mode and structural similarity to provide qualitative assessments and predictions based on available structural information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号