首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2013年   2篇
  2010年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The 1,5,6,8,10‐pentamethylheptalene‐4‐carboxaldehyde ( 4b ) (together with its double‐bond‐shifted (DBS) isomer 4a ) and methyl 4‐formyl‐1,6,8,10‐tetramethylheptalene‐5‐carboxylate ( 15b ) were synthesized (Schemes 3 and 7, resp.). Aminoethenylation of 4a / 4b with N,N‐dimethylformamide dimethyl acetal (=1,1‐dimethoxy‐N,N‐dimethylmethanamine=DMFDMA) led in DMF to 1‐[(1E)‐2‐(dimethylamino)ethenyl]‐5,6,8,10‐tetramethylheptalene‐2‐carboxaldehyde ( 18a ; Scheme 9), whereas the stronger aminoethenylation agent N,N,N′,N′,N″,N″‐hexamethylmethanetriamine (=tris(dimethylamino)methane=TDMAM) gave an almost 1 : 1 mixture of 18a and 1‐[(1E)‐2‐(dimethylamino)ethenyl]‐5,6,8,10‐tetramethylheptalene‐4‐carboxaldehyde ( 20b ; Scheme 11). Carboxylate 15b delivered with DMFDMA on heating in DMF the expected aminoethenylation product 19b (Scheme 10). The aminoethenylated heptalenecarboxaldehydes were treated with malononitrile in CH2Cl2 in the presence of TiCl4/pyridine to yield the corresponding malononitrile derivatives 23b, 24b , and 26a (Schemes 13 and 14). The photochemically induced DBS process of the heptalenecarboxaldehydes as ‘soft’ merocyanines and their malononitrile derivatives as ‘strong’ merocyanines of almost zwitterionic nature were studied in detail (Figs. 1029) with the result that 1,4‐donor/acceptor substituted heptalenes are cleaner switchable than 1,2‐donor/acceptor‐substituted heptalenes.  相似文献   
2.
The dehydrogenation reaction of a mixture of heptalene‐1,2‐ and heptalene‐4,5‐dimethanols 4a and 4b with basic MnO2 in AcOEt at room temperature led to the formation of the corresponding heptaleno[1,2‐c]furan‐1‐one 6a and heptaleno[1,2‐c]furan‐3‐one 7a (Scheme 2). Both products can be isolated by chromatography on silica gel. The methylenation of the furan‐3‐one 7a with 1 mol‐equiv. of Tebbe's reagent at ?25 to ?30° afforded the 2‐isopropenyl‐5‐methylheptalene‐1‐methanol 9a , instead of the expected 3,6‐dimethylheptaleno[1,2‐c]furan 8 (Scheme 3). Also, the treatment of 7a with Takai's reagent did not lead to the formation of 8 . On standing in solution at room temperature, or more rapidly on heating at 60°, heptalene 9a undergoes a reversible double‐bond shift (DBS) to 9b with an equilibrium ratio of 1 : 1.  相似文献   
3.
The reduction of heptalene diester 1 with diisobutylaluminium hydride (DIBAH) in THF gave a mixture of heptalene‐1,2‐dimethanol 2a and its double‐bond‐shift (DBS) isomer 2b (Scheme 3). Both products can be isolated by column chromatography on silica gel. The subsequent chlorination of 2a or 2b with PCl5 in CH2Cl2 led to a mixture of 1,2‐bis(chloromethyl)heptalene 3a and its DBS isomer 3b . After a prolonged chromatographic separation, both products 3a and 3b were obtained in pure form. They crystallized smoothly from hexane/Et2O 7 : 1 at low temperature, and their structures were determined by X‐ray crystal‐structure analysis (Figs. 1 and 2). The nucleophilic exchange of the Cl substituents of 3a or 3b by diphenylphosphino groups was easily achieved with excess of (diphenylphospino)lithium (=lithium diphenylphosphanide) in THF at 0° (Scheme 4). However, the purification of 4a / 4b was very difficult since these bis‐phosphines decomposed on column chromatography on silica gel and were converted mostly by oxidation by air to bis(phosphine oxides) 5a and 5b . Both 5a and 5b were also obtained in pure form by reaction of 3a or 3b with (diphenylphosphinyl)lithium (=lithium oxidodiphenylphospanide) in THF, followed by column chromatography on silica gel with Et2O. Carboxaldehydes 7a and 7b were synthesized by a disproportionation reaction of the dimethanol mixture 2a / 2b with catalytic amounts of TsOH. The subsequent decarbonylation of both carboxaldehydes with tris(triphenylphosphine)rhodium(1+) chloride yielded heptalene 8 in a quantitative yield. The reaction of a thermal‐equilibrium mixture 3a / 3b with the borane adduct of (diphenylphosphino)lithium in THF at 0° gave 6a and 6b in yields of 5 and 15%, respectively (Scheme 4). However, heating 6a or 6b in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) in toluene, generated both bis‐phosphine 4a and its DBS isomer 4b which could not be separated. The attempt at a conversion of 3a or 3b into bis‐phosphines 4a or 4b by treatment with t‐BuLi and Ph2PCl also failed completely. Thus, we returned to investigate the antipodes of the dimethanols 2a, 2b , and of 8 that can be separated on an HPLC Chiralcel‐OD column. The CD spectra of optically pure (M)‐ and (P)‐configurated heptalenes 2a, 2b , and 8 were measured (Figs. 4, 5, and 9).  相似文献   
4.
Methyl heptalenecarboxylates of type A and B with π(1) and π(2) substituents in 1,4‐relation (Scheme 1) were synthetized starting with dimethyl 1‐methylheptalene‐4,5‐dicarboxylates 5b and 6b derived from 7‐isopropyl‐1,4‐dimethylazulene (=guaiazulene) and 1,4,6,8‐tetramethylazulene by thermal reaction with dimethyl acetylenedicarboxylate. The further general way of proceeding for the introduction of the π(1) and π(2) substituents is displayed in Scheme 3, and the thus obtained methyl heptalene‐5‐carboxylates of type A and B are listed in Table 1. The C?C bonds of the 2‐arylethenyl and 4‐arylbuta‐1,3‐dien‐1‐yl groups of π(1) and π(2) were in all cases (E)‐configured and showed s‐trans conformation at the C? C bonds (X‐ray and 1H‐NOE evidence) in the B ‐type as well as in the A ‐type heptalenes (cf. Figs. 5–12). All B ‐type heptalenes showed a strongly enhanced heptalene band I in the wavelength region 440–490 nm in hexane/CH2Cl2 9 : 1 (cf. Table 4 and Figs. 13–20). The A ‐type heptalenes showed in this region only weak absorption, recognizable as shoulders or simply tailing of the dominating heptalene bands II/III (Table 5). Absorption band I of the B ‐type heptalenes appeared almost at the same wavelength as the longest wavelength absorption band of comparable open‐chain α,ω‐diarylpolyenes (cf. Fig. 21). The cyclic double bond shift (DBS) of the A ‐ and B ‐type heptalenes could be photochemically steered in one or the other direction by selective irradiation (cf. Fig. 22).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号