首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Bisphenol A (BPA) imprinted sponge mesoporous silica was synthesized using a combination of semi-covalent molecular imprinting and simple self-assembly process. The molecularly imprinted sponge mesoporous silica (MISMS) material obtained was characterized by FT-IR, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption measurements. The results show that the MISMS possessed a large specific surface area (850.55 m2 g−1) and a highly interconnected 3-D porous network. As a result, the MISMS demonstrated a superior specific adsorption capacity of 169.22 μmol g−1 and fast adsorption kinetics (reaching equilibrium within 3 min) for BPA. Good class selectivity for BPA and its analogues (bisphenol F, bisphenol B, bisphenol E and bisphenol AF) was also demonstrated by the sorption experiment. The MISMS as solid-phase extraction (SPE) material was then evaluated for isolation and clean-up of these bisphenols (BPs) from sediment samples. An accurate and sensitive analytical method based on the MISMS–SPE coupled with HPLC–DAD has been successfully established for simultaneous determination of five BPs in river sediments with detection limits of 0.43–0.71 ng g−1 dry weight (dw). The recoveries of BPs for lyophilizated sediment samples at two spiking levels (50 and 500 ng g−1 dw for each BP) were in the range of 75.5–105.5% with RSD values below 7.5%.  相似文献   
2.
Molecularly imprinted polymer (MIP) for solid extraction and preconcentration of catechins have been successfully prepared by a thermal polymerization method using quercetin as template, 4-vinylpyridine as functional monomer and ethylene glycol dimethacrylate as crosslinker. A solution mixture of acetone and acetonitrile was used as porogen. Systematic investigations of the influence of monomer, cross-linker, porogen, as well as polymerization conditions on the properties of the MIPs were carried out. The quercetin MIPs were evaluated according to their selective recognition properties for quercetin, structurally related compounds (catechin, epigallocatechin gallate and epicatechin) and a unrelated compound of similar molecular size (α-tocopherol). Good binding was observed for quercetin, catechin and epigallocatechin gallate with an optimized MIP in a solid phase extraction system. Adsorption and kinetic characteristics were evaluated for catechins which indicated that the synthesized polymer had high adsorption capacity and contained homogeneous binding sites. Chemical and morphological characterization of the MIP was investigated by FTIR, SEM and BET, which confirmed a high degree of polymerization. Finally, the MIP was successfully applied to the clean-up and preconcentration of catechins from several natural samples.  相似文献   
3.
The development of standard operation procedures for the manufacture of a n-octadecyl bonded spherical silica packing from partially condensed tetraethoxysilane as silica source is described. The synthesis comprises five intermediate products and six synthesis steps which were examined according to their reproducibility and robustness. The results led to the optimisation of the manufacturing process for a n-octadecyl bonded silica. Correlations were drawn between the dynamic viscosity of the poly(ethoxy)siloxane (PES), the synthesis parameters, the resulting pore structural properties and particle size distribution of the silicas. Validated procedures were developed to manufacture spherical porous ultra-pure silicas with a specific surface area of 350 m2 g(-1) +/- 5% R.S.D., a specific pore volume of 1.0 ml (-1) +/- 3.7% R.S.D., an average pore diameter of 12.0 nm +/- 0.5% R.S.D. and an average particle diameter of 5 microm. Results are presented on trial batches and the final master batch which were both used as packing materials in reversed-phase liquid chromatography (RP-LC) columns. The latter columns were certified and accepted as an HPLC column as reference material (BCR-722) by the European Commission, Institute for Reference Materials and Measurements (IRMM), Geel, Belgium.  相似文献   
4.
The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption–desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30–60 μm), a specific surface area (SBET) of 281.26 m2 g−1 and a total pore volume (Vt) of 0.459 cm3 g−1. Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2–2.2 ng mL−1. The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL−1 for each BP) were in the range of 81.3–106.7% with RSD values below 8.3%.  相似文献   
5.
Adsorption technology is widely considered as the most promising and robust method of purifying water at low cost and with high-efficiency. Carbon-based materials have been extensively explored for adsorption applications because of their good chemical stability, structural diversity, low density, and suitability for large scale production. Graphene – a single atomic layer of graphite – is the newest member in the family of carbon allotropes and has emerged as the “celeb” material of the 21st century. Since its discovery in 2004 by Novoselov, Geim and co-workers, graphene has attracted increased attention in a wide range of applications due to its unprecedented electrical, mechanical, thermal, optical and transport properties. Graphene's infinitely high surface-to-volume ratio has resulted in a large number of investigations to study its application as a potential adsorbent for water purification. More recently, other graphene related materials such as graphene oxide, reduced graphene oxide, and few-layered graphene oxide sheets, as well as nanocomposites of graphene materials have also emerged as a promising group of adsorbent for the removal of various environmental pollutants from waste effluents. In this review article, we present a synthesis of the current knowledge available on this broad and versatile family of graphene nanomaterials for removal of dyes, potentially toxic elements, phenolic compounds and other organic chemicals from aquatic systems. The challenges involved in the development of these novel nanoadsorbents for decontamination of wastewaters have also been examined to help identify future directions for this emerging field to continue to grow.  相似文献   
6.
2H NMR has been used as a tool for probing the state of water in hydrophilic stationary phases for liquid chromatography at temperatures between −80 and +4 °C. The fraction of water that remained unfrozen in four different neat silicas with nominal pore sizes between 60 and 300 Å, and in silicas with polymeric sulfobetaine zwitterionic functionalities prepared in different ways, could be determined by measurements of the line widths and temperature-corrected integrals of the 2H signals. The phase transitions detected during thawing made it possible to estimate the amount of non-freezable water in each phase. A distinct difference was seen between the neat and modified silicas tested. For the neat silicas, the relationship between the freezing point depression and their pore size followed the expected Gibbs–Thomson relationship. The polymeric stationary phases were found to contain considerably higher amounts of non-freezable water compared to the neat silica, which is attributed to the structural effect that the sulfobetaine polymers have on the water layer close to the stationary phase surface. The sulfobetaine stationary phases were used alongside the 100 Å silica to separate a number of polar compounds in hydrophilic interaction (HILIC) mode, and the retention characteristics could be explained in terms of the surface water structure, as well as by the porous properties of the stationary phases. This provides solid evidence supporting a partitioning mechanism, or at least of the existence of an immobilized layer of water into which partitioning could be occurring.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号