首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2011年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Some low‐lying states of HAlO+ and HOAl+ cations have been studied using the complete‐active‐space self‐consistent field (CASSCF) and multiconfiguration second‐order perturbation theory (CASPT2) methods with the contracted atomic natural orbital (ANO) basis sets. The geometries of all stationary points along the potential energy surfaces were optimized at the CASSCF/ANO and CASPT2/ANO levels. The ground and the first excited states of HAlO+ are predicted to be X2Π and A2Σ+ states, respectively. It was predicted that the ground state of HOAl+ is X2Σ+ state. The A2Π state of HOAl+ has unique imaginary frequency. A bent local minimum M1 was found along the 12A″ potential energy surface, and the A2Π state of HOAl+ should be the transition state of the isomerization reactions for M1 ? M1. The CASPT2/ANO potential energy curves of isomerization reactions were calculated as a function of HAlO bond angle. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   
2.
Layers of the metastable, amorphous HAlO are synthesized by chemical vapor deposition from the molecular compound tert-butoxyalane ([tBu-O-AlH2]2). At temperatures above 500 °C, these layers transform to biphasic Al·Al2O3 due to the elimination of di-hydrogen. The interaction of HAlO films with short laser pulses causes partial transformation of amorphous HAlO into nano-crystalline Al·Al2O3. Using an interference pattern of two coherent high-power Nd:YAG laser beams produces local and periodic heating, inducing crystallization at equally distant lines in the HAlO layer. Depending on the laser fluence, different morphologies and different amounts of crystalline phases are obtained. In this study, the surface morphology and the distribution of crystalline phases of the structured samples are analyzed using SEM, FIB and TEM. The two-dimensional structures consist of periodic variations of morphology, chemical composition, and phase identity with a well-defined long-range order. When bio-functionalized, the structured samples may be used as carriers for structurally controlled cell-cultivation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号