首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   3篇
  国内免费   4篇
化学   70篇
物理学   7篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2019年   2篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1997年   1篇
  1987年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
Manuela Kim 《Talanta》2007,72(3):1054-1058
A simple and sensitive HPLC post-derivatization method with colorimetric detection has been developed for the determination of N-nitroso glyphosate in samples of technical glyphosate. Separation of the analyte was accomplished using an anionic exchange resin (2.50 mm × 4.00 mm i.d., 15 μm particle size, functional group: quaternary ammonium salt) with Na2SO4 0.0075 M (pH 11.5) (flow rate: 1.0 mL min−1) as mobile phase. After separation, the eluate was derivatized with a colorimetric reagent containing sulfanilamide 0.3% (w/v), [N-(1-naphtil)ethilendiamine] 0.03% (w/v) and HCl 4.5 M in a thermostatized bath at 95 °C. Detection was performed at 546 nm. All stages of the analytical procedure were optimized taking into account the concept of analytical minimalism: less operation times and costs; lower sample, reagents and energy consumption and minimal waste. The limit of detection (k = 3) calculated for 10 blank replicates was 0.04 mg L−1 (0.8 mg kg−1) in the solid sample which is lower than the maximum tolerable accepted by the Food and Agriculture Organization of the United Nations.  相似文献   
2.
A capillary electrophoresis (CE) with UV absorption detection method is described for the simultaneous determination of glufosinate, glyphosate, and aminomethylphosphoric acid. The 9‐fluorenylmethyl chloroformate (FMOC‐Cl) was used for precolumn derivatization of the non‐absorbing herbicides. The three analytes were separated by CE in 9 min with 25 mM borate buffer at pH 9, followed by detection with a UV detector at 260 nm. We demonstrate how the detection limit can be enhanced by using acetonitrile‐salt mixtures. With acetonitrile‐salt mixtures, the limit of detection (LOD) was in the 10?7 M range. Linearity of more than two orders of magnitude was generally obtained. Precisions of migration times and peak areas were less than 0.9% and 7.5%, respectively. The applicabilities of the method for the analysis of ground water and lake water were examined.  相似文献   
3.
An existing method for the determination of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) in water has been improved. It is based on precolumn derivatization with the fluorescent reagent 9-fluorenylmethylcloroformate (FMOC) followed by large-volume injection in a coupled-column LC system using fluorescence detection (LC-LC-FD). The derivatization step was slightly modified by changing parameters such as volume and/or concentration of sample and reagents to decrease the limits of quantification (LOQ) of glyphosate and AMPA to 0.1 microg/l. Additionally, the use of Amberlite IRA-900 for preconcentration of glyphosate, prior to the derivatization step, was investigated; the LOQ of glyphosate was lowered to 0.02 microg/l. Drinking, surface and ground water spiked with glyphosate and AMPA at 0.1-10 microg/l concentrations were analysed by the improved LC-LC-FD method. Recoveries were 87-106% with relative standard deviations lower than 8%. Drinking and ground water spiked with glyphosate at 0.02 and 0.1 microg/l were analysed after preconcentration on the anion-exchange resin with satisfactory recoveries (94-105%) and precision (better than 8%).  相似文献   
4.
Abstract

Novel metal-carbene complexes (4) with a metallapentalene framework have been obtained from hypervalent diazadiselenathiapentalenes (3) by treating with Pt(PPh3)4, Pd(PPh3)4 and RhCl(PPh3)3. X-Ray investigations revealed that the central hypervalent sulfur atom in 3 was substituted by a metal atom to form M-Se bonds in the resultant metallapentalene framework.  相似文献   
5.
A simple, rapid, and low-cost coulometric method for direct detection of glyphosate using hydrophilic interaction chromatography is presented. The principle of detection is based on the enhancement of the anodic current of copper microelectrode in the presence of complexing agents, such as glyphosate, with the formation of a soluble Cu(II) complex. Under optimized conditions, the limit of detection (S/R = 3) for glyphosate was 0.1 mg L−1 (0.59 μM) without any preconcentration method. The calibration curve has been found linear in all concentration range tested (from limit of detection to 34 mg L−1) with an excellent correlation coefficient (0.9999). The present method was successfully applied for the determination of glyphosate in fruit juices without any kind of extraction, clean-up, or preconcentration step, with recoveries of 92 and 90% for apple and grape juice, respectively.  相似文献   
6.
Dissipation of the herbicide active ingredient glyphosate was investigated in natural waters. To assess combined effects, glyphosate was applied in its pure form (glyphosate isopropylammonium salt) and in preparation Roundup Classic® formulated with polyethoxylated tallowamines (POEA). Standing and running surface water samples originated from Lake Balaton and River Danube between early May and mid-June of 2015. The kinetics of dissipation of glyphosate, measured by high-performance liquid chromatography combined with UV-VIS absorbance detection or tandem mass spectrometry, was investigated under laboratory conditions in aquaria with or without the presence of biofilms. The quantity and the biofilm structure of algal biomass were determined by in vivo fluorimetry and scanning electron microscopy. The presence of POEA affected the dissipation of glyphosate, and dissipation profiles differed in the investigated natural waters. Significantly higher initial concentrations of glyphosate were measured in River Danube for treatment with formulated glyphosate (101.4 ± 6.2 µg L?1), than with glyphosate alone (79.9 ± 6.6 µg L?1), and dissipation to a residual level (57.6 ± 1.4 µg L?1) consequently took longer (approximately by 1 day). Degradation of glyphosate from the initial level (91.24 ± 5.9 µg L?1) in Lake Balaton was not detected. Phytotoxic effects of glyphosate, particularly if enhanced by a formulant on algal biomass, were observed. Thus, 5–18% and 11–33% of algal biomass reduction was determined in River Danube upon treatments with glyphosate and Roundup Classic®, respectively. Corresponding biomass decreases in Lake Balaton were 1.3–13% and 9–14%, respectively, accompanied by an overall decay in the algal biofilms. In River Danube, treatments resulted in the occurrence of 1.4–5.8% of green algae in the algal biomass in 28 days, while green algae were not detected in the untreated control. The results indicate that glyphosate is capable of modifying the structure of the algal community and to induce increased secretion of extracellular polymeric substances matrix in the biofilms assessed.  相似文献   
7.
建立了超高效液相色谱-串联质谱同时快速测定不同茶叶中草甘膦、氨甲基膦酸及草铵膦的方法。样品用0.05 mol/L NaOH提取,并以HCl调节pH值,Oasis HLB小柱净化除杂,氯甲酸-9-芴基甲酯(FMOCCl)柱前衍生反应后,超高效液相色谱-串联质谱法测定。本方法在5~1000μg/L浓度范围内,不同茶叶基质中草甘膦、氨甲基膦酸、草铵膦线性关系良好(R2>0.99)。在0.1,0.4和4 mg/kg添加水平下,不同茶叶(绿茶、红茶、乌龙茶、普洱茶)中3种化合物回收率均介于72.1%~109.9%之间,相对标准偏差RSD在0.5%~9.8%之间(n=6),方法定量限(LOQ)在0.03~0.08 mg/kg之间(S/N=10)。本方法稳定,简便,灵敏,能够满足检测需求。  相似文献   
8.
In this work, samples consisting of BiVO4 with exposed (040) facets coupled with Bi2S3 (Bi2S3/BiVO4) were prepared through a one-pot hydrothermal method, using ethylenediaminetetraacetic acid as directing agent and L-cysteine as sulfur source and soft template. X-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy measurements indicated that the Bi2S3 content had a significant influence on the growth of (040) and (121) facets as well as on the morphology of the Bi2S3/BiVO4 samples. When the Bi2S3 content reached 1 mmol, the Bi2S3/BiVO4 samples exhibited a peony-like morphology. The results of transient photocurrent tests and electrochemical impedance spectroscopy measurements confirmed that a more effective charge separation and a faster interfacial charge transfer occurred in Bi2S3/BiVO4 than BiVO4. The enhanced photocatalytic activity of the Bi2S3/BiVO4 samples could be attributed to the improved absorption capability in the visible light region and the enhanced electron-hole pair separation efficiency due to the formation of the Bi2S3/BiVO4 heterostructure. In addition, the Bi2S3/BiVO4 samples showed relative stability and reusability. The simple method presented in this work could be used to fabricate composite photocatalysts with high activity for different applications, such as photocatalytic degradation of organic pollutants, photocatalytic splitting of water, and photocatalytic reduction of carbon dioxide.  相似文献   
9.
A simple CE method for simultaneous determination of glyphosate and its metabolites (i.e. aminomethylphosphonic acid, glyoxylate, sarcosine and formaldehyde) in plants is reported here. A BGE of pH 7.5, 10% ACN, 7.5 mM phthalate, containing 0.75 mM hexadecyltrimethylammonium bromide as an electro‐osmotic flow modifier, an applied voltage of –20 kV and absorptiometric monitoring at 220 nm were the optimal chemical and instrumental parameters. The method, with development time 20 min, shows linear calibrations within the range 5–500 μg/mL (for all target analytes) with correlation coefficients between 0.999 and 0.998. It has been validated by application to samples of Lolium spp. The electroinjection mode hinders most interferents to enter the capillary, thus providing a clean electropherogram and making unnecessary long sample‐preparation steps.  相似文献   
10.
A copper phthalocyanine/multiwalled carbon nanotube film‐modified glassy carbon electrode has been used for the determination of the herbicide glyphosate (Gly) at ?50 mV vs. SCE by electrochemical oxidation using differential pulse voltammetry (DPV). Cyclic voltammetry and electrochemical impedance spectroscopy showed that Gly is adsorbed on the metallic centre of the copper phthalocyanine molecule, with formation of Gly‐copper ion complexes. An analytical method was developed using DPV in pH 7.4 phosphate buffer solution, without any pretreatment steps: Gly was determined in the concentration range of 0.83–9.90 μmol L?1, with detection limit 12.2 nmol L?1 (2.02 μg L?1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号