首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
2.
Uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) is the final product of hexosamine biosynthetic pathway (HSP) and the donor substrate for the modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (GlcNAc) catalyzed by O-GlcNAc transferase (OGT). Many analogs of UDP-GlcNAc were designed to interfere with the process of protein O-glycosylation by blocking OGT. A novel rearrangement reaction was observed in which phosphate-N-acetylglucosamine moiety migrated to 3' terminus of ribose in ESI-MS(n) of UDP-GlcNAc. Results from tandem mass spectrometry, control experiments and calculation showed that the phosphate-N-acetylglucosamine migration might undergo a pentacoordinate phosphoric intermediate. Furthermore, the acetylation of glucosamine in UDP-GlcNAc was essential in the migration process.  相似文献   
3.
Human natural killer—1 (HNK-1) is a sulfated glyco-epitope regulating cell adhesion and synaptic functions. HNK-1 and its non-sulfated forms, which are specifically expressed in the brain and the kidney, respectively, are distinctly biosynthesized by two homologous glycosyltransferases: GlcAT-P in the brain and GlcAT-S in the kidney. However, it is largely unclear how the activity of these isozymes is regulated in vivo. We recently found that bisecting GlcNAc, a branching sugar in N-glycan, suppresses both GlcAT-P activity and HNK-1 expression in the brain. Here, we observed that the expression of non-sulfated HNK-1 in the kidney is unexpectedly unaltered in mutant mice lacking bisecting GlcNAc. This suggests that the biosynthesis of HNK-1 in the brain and the kidney are differentially regulated by bisecting GlcNAc. Mechanistically, in vitro activity assays demonstrated that bisecting GlcNAc inhibits the activity of GlcAT-P but not that of GlcAT-S. Furthermore, molecular dynamics simulation showed that GlcAT-P binds poorly to bisected N-glycan substrates, whereas GlcAT-S binds similarly to bisected and non-bisected N-glycans. These findings revealed the difference of the highly homologous isozymes for HNK-1 synthesis, highlighting the novel mechanism of the tissue-specific regulation of HNK-1 synthesis by bisecting GlcNAc.  相似文献   
4.
Diethyl C-(2-deoxy-2-acetamido-β-d-mannopyranosyl)methylphosphonate and dimethyl C-(2-deoxy-2-acetamido-β-d-glucopyranosyl)methylphosphonate were stereoselectively prepared from N-acetyl d-glucosamine. Routes to such compounds starting from d-GlcNAc have been problematic, but we have found short and efficient implementations of this highly desirable transformation.  相似文献   
5.
The acid dissociation constant (pKa) of small, biological molecules is an important physical property used for investigating enzyme mechanisms and inhibitor design. For phosphorus-containing molecules, the 31P nuclear magnetic resonance (NMR) chemical shift is sensitive to the local chemical environment, particularly to changes in the electronic state of the molecule. Taking advantage of this property, we present a 31P NMR approach that uses inorganic phosphate buffer as an internal pH reference to determine the pKa values of the imide and second diphosphate of uridine-5′-diphosphate compounds, including the first reported values for UDP-GlcNAc and UDP-S-GlcNAc. New methods for using inorganic phosphate buffer as an internal pH reference, involving mathematical correction factors and careful control of the chemical shift reference sample, are illustrated. A comparison of the newly determined imide and diphosphate pKa values of UDP, UDP-GlcNAc, and UDP-S-GlcNAc with other nucleotide phosphate and thio-analogs reveals the significance of the monosaccharide and sulfur position on the pKa values.  相似文献   
6.
The crystal structure of methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glycopyranosyl‐(1→4)‐β‐d ‐mannopyranoside monohydrate, C15H27NO11·H2O, was determined and its structural properties compared to those in a set of mono‐ and disaccharides bearing N‐acetyl side‐chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N‐acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen‐bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cistrans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter‐residue hydrogen bonding and some bond angles in or proximal to β‐(1→4) O‐glycosidic linkages on linkage torsion angles ? and ψ. Hypersurfaces correlating ? and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter.  相似文献   
7.
The efficient and selective cross‐metathesis (CM) of both the α‐ and β‐anomers of C‐allyl‐glucose and N‐acetyl‐C‐allyl‐glucosamine with electron‐deficient olefins is reported. The applicability of our CM approach in the synthesis of glycoside‐conjugates is illustrated by the CM of α‐C‐allyl‐glycosamine 2 with uridinyl vinylphosphonate 22, to produce UDP‐GlcNAc analog 23.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号