首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2017年   2篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
One‐electron reduction of a pyrazolate‐bridged triangular Fe33‐O) core induces a cascade wherein all three metal centers switch from high‐spin Fe3+ to low‐spin Fe2.66+. This hypothesis is supported by spectroscopic data (1H‐NMR, UV‐vis‐NIR, infra‐red, 57Fe‐Mössbauer, EPR), X‐ray crystallographic characterization of the cluster in both oxidation states and also density functional theory. The reduction induces substantial contraction in all bond lengths around the metal centers, along with diagnostic shifts in the spectroscopic parameters. This is, to the best of our knowledge, the first example of a one‐electron redox event causing concerted change in multiple iron centers.  相似文献   
2.
A highly active FeSe2 electrocatalyst for durable overall water splitting was prepared from a molecular 2Fe‐2Se precursor. The as‐synthesized FeSe2 was electrophoretically deposited on nickel foam and applied to the oxygen and hydrogen evolution reactions (OER and HER, respectively) in alkaline media. When used as an oxygen‐evolution electrode, a low 245 mV overpotential was achieved at a current density of 10 mA cm−2, representing outstanding catalytic activity and stability because of Fe(OH)2/FeOOH active sites formed at the surface of FeSe2. Remarkably, the system is also favorable for the HER. Moreover, an overall water‐splitting setup was fabricated using a two‐electrode cell, which displayed a low cell voltage and high stability. In summary, the first iron selenide material is reported that can be used as a bifunctional electrocatalyst for the OER and HER, as well as overall water splitting.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号