首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   1篇
力学   6篇
  2023年   2篇
  2015年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 171 毫秒
1
1.
The fluidization behavior of Geldart A particles in a gas–solid micro-fluidized bed was investigated by Eulerian–Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation showed that the predicted minimum bubbling velocities were significantly lower than the experimental data even when an extremely fine grid size (of approximately one particle diameter) was used. The modified Gibilaro drag model was therefore tested next. The predicted minimum bubbling velocity and bed voidage were in reasonable agreement with the experimental data available in literature. The experimentally observed regime transition phenomena from bubbling to slugging were also reproduced successfully in the simulations. Parametric studies indicated that the solid-wall boundary conditions had a significant impact on the predicted gas and solid flow behavior.  相似文献   
2.
The fluidization state in the circulating fluidized bed (CFB) boiler is crucial to its stable and safe operation. However, up to now, the research field has not reached unanimity on whether the fluidization regime that the upper furnace of the boiler operates in is the fast fluidization or pneumatic transport. To this end, this paper reviewed relevant research on the transition between the fast fluidization and pneumatic transport of Geldart group B particles, including the flow characteristics of the fast fluidization, the transition condition between the fast fluidization and pneumatic transport, the determination methods of the transport velocity utr and saturation carrying capacity Gs1 and the influencing factors on these two parameters. Previous research findings can provide certain guidelines for the design and optimization of the CFB boiler, and result in plenty of prediction correlations for utr and Gs1. Nonetheless, owing to insufficient data available on Geldart group B particles, especially the ones obtained under high temperature or pressure conditions and in large-scale CFB apparatuses, the existing correlations are not well suited for the prediction of utr and Gs1 of Geldart group B particles. Thus, further efforts are urgently demanded on the fast fluidization transition of Geldart group B particles.  相似文献   
3.
Geldart B 类颗粒气固流化床内的压力波动特性(英文)   总被引:1,自引:0,他引:1  
采用多通道压力采集系统测量了Geldart B类颗粒(树脂)矩形流化床(2.000m×0.300m×0.025m)内的压力波动,探索了流化床内的压力波动特征;同时采用标准方差、自相关和互相关函数分析了表观气速和静床高度对压力波动、压力波速度和压力波主频的影响。结果表明,气泡行为(如:气泡的形成、发展、聚并和破碎)是影响流化床内压力波动的主要因素;密相和稀相界面处的压力波动幅值主要由气泡崩塌决定;压力波在流化床内进行传播,并且具有明显的周期性特征;此外,压力波动、压力波速度和压力波主频均与表观气速和静床高度密切相关。  相似文献   
4.
Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction. The bubble behaviors under elevated pressure, strongly influencing the fluidization and reaction conversion of the whole system, are of great research significance. In this work, the bubble behaviors of Geldart B particle in a pseudo two-dimensional (2D) pressurized fluidized bed were experimentally studied based on digital image analysis technique. The effects of pressure and fluidization gas velocity on the general bubble behaviors (i.e., size, shape and spatial distribution) and the dynamic characteristics, such as the time-evolution of voidage distribution and local flow regimes, were comprehensively investigated. Results show that increasing pressure reduces the stability of bubbles and facilitates gas passing through the emulsion phase, resulting in the “smoother” fluidization state with smaller bubbles and declined bubble fraction and standard deviation. The equivalent bubble diameter and bubble aspect ratio increase with the increasing gas velocity while decrease as pressure rises. The elevated pressure reduces bubbles extension in the vertical direction, prohibits the “short pass” of fluidization gas in large oblong bubbles/slugs and benefits the gas–solid interaction. The flow regimes variation with gas velocity is affected by the elevated pressure, and demonstrates different features in different local positions of the bed.  相似文献   
5.
Magnetic particles can be uniformly fluidized by coupling the gas flow with an externally imposed magnetic field. Interparticle forces generated by the magnetic field cause aggregation of the particles in chain-like structures preferentially oriented along the magnetic field lines. In the present paper, we study the implications of the formation of these special types of aggregates on the empirical Richardson-Zaki (RZ) equation, originally proposed to describe the expansion of fluidized beds of non-aggregated particles. We have addressed two important issues, namely the flow regime, which is a function of the size of the aggregates, and the effect of shape and orientation of the chain-like aggregates with respect to gas flow on fluid drag. We propose a modified RZ equation (MRZE) in which the velocity scale, given by the terminal settling velocity of the individual aggregates, and the RZ exponent are predetermined as a function of the chain length. The chain length depends on the ratio of the magnetic energy to gravitational energy, and is estimated from the magnetic field intensity, and particle magnetization, size and density. Predictions of the MRZE are successfully compared with published results in the literature on the expansion of magnetic particles in the presence of externally applied magnetic fields.  相似文献   
6.
Two-fluid modeling of Geldart A particles in gas-fluidized beds   总被引:1,自引:0,他引:1  
We have investigated the effect of cohesion and drag models on the bed hydrodynamics of Geldart A particles based on the two-fluid (TF) model. For a high gas velocity U0 = 0.03 m/s, we found a transition from the homogeneous fluidization to bubbling fluidization with an increase of the coefficient C1, which is used to account for the contribution of cohesion to the excess compressibility. Thus cohesion can play a role in the bed expansion of Geldart A particles. Apart from cohesion, we have also investigated the influence of the drag models. When using the Wen and Yu drag correlation with an exponent n = 4.65, we find an under-prediction of the bed expansion at low gas velocities (U0 = 0.009 m/s). When using a larger exponent (n = 9.6), as reported in experimental studies of gas-fluidization, a much better agreement with the experimental bed expansion is obtained. These findings suggest that at low gas velocity, a scale-down of the commonly used drag model is required. On the other hand, a scale-up of the commonly used drag model is necessary at high gas velocity (U0 = 0.2 and 0.06 m/s). We therefore conclude that scaling the drag force represent only an ad hoc way of repairing the deficiencies of the TF model, and that a far more detailed study is required into the origin of the failure of the TF model for simulating fluidized beds of fine powders.  相似文献   
7.
We have investigated the effect of cohesion and drag models on the bed hydrodynamics of Geldart A particles based on the two-fluid (TF) model.For a high gas velocity Uo=0.03m/s, we found a transition from the homogeneous fluidization to bubbling fluidization with an increase of the coefficient C1, which is used to account for the contribution of cohesion to the excess compressibility. Thus cohesion can play a role in the bed expansion of Geldart A particles. Apart from cohesion, we have also investigated the influence of the drag models. When using the Wen and Yu drag correlation with an exponent n=4.65, we find an under-prediction of the bed expansion at low gas velocities (Uo=0.009 m/s). When using a larger exponent (n=9.6), as reported in experimental studies of gas-fluidization,a much better agreement with the experimental bed expansion is obtained. These findings suggest that at low gas velocity,a scale-down of the commonly used drag model is required. On the other hand, a scale-up of the commonly used drag model is necessary at high gas velocity (Uo=0.2 and 0.06 m/s). We therefore conclude that scaling the drag force represent only an ad hoc way of repairing the deficiencies of the TF model, and that a far more detailed study is required into the origin of the failure of the TF model for simulating fluidized beds of fine powders.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号