首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The twelve isotypic intermetallic compounds R2Ru3Ga9 with R = Y, La–Nd, Sm, Gd–Tm were prepared by arc‐melting of the elemental components. Their crystal structure was determined from single‐crystal X‐ray data of Dy2Ru3Ga9: Cmcm, a = 1279.3(2) pm, b = 755.6(1) pm, c = 964.7(1) pm, Z = 4, R = 0.020 for 671 structure factors and 42 variable parameters. All atomic positions have within two standard deviations ideal occupancies (occupancy values vary between 98.8(5) and 101.2(6)%). The structure is briefly discussed, emphasizing its relation to other structures with a high content of gallium or aluminum.  相似文献   
2.
The title compounds were prepared from the elemental components at high temperatures. The compounds LnOsGa3 crystallize with the cubic TmRuGa3 type structure which was refined from four‐circle X‐ray diffractometer data of TbOsGa3: Pmm, Z = 3, a = 640.8(1) pm, R = 0.014 for 173 structure factors and 10 variable parameters. The other gallides crystallize with a new structure type which was determined from single‐crystal X‐ray data of CeOsGa4: Pmma, Z = 6, a = 963.9(2) pm, b = 880.1(1) pm, c = 767.0(1) pm, R = 0.030 for 744 F values and 56 variables. The structure may be considered as consisting of two kinds of alternating layers, although bonding within and between the layers is of similar strength. One kind of layers (A) is slightly puckered, two‐dimensionally infinite, hexagonal close packed, with the composition OsGa3; the other kind of layers (B) is planar with the composition CeGa. The structure is closely related to that of Y2Co3Ga9 where the corresponding layers have the compositions Co3Ga6 (A) and Y2Ga3 (B).  相似文献   
3.
A new ternary compound, Ce2PdGa10, has been synthesized using Ga flux and characterized by single-crystal X-ray diffraction. Ce2PdGa10 adopts a tetragonal structure in the I4/mmm space group and is isostructural to Ce2NiGa10. Lattice parameters are , , , and Z=2. The compound is metallic (dρ/dT>0), with the resistance decreasing roughly linearly with temperature from 300 to 175 K. The magnetic susceptibility of Ce2PdGa10 is consistent with local-moment paramagnetism and no long-range magnetic ordering occurs down to 2 K. A large positive magnetoresistance over 200% is observed at 2 K for fields of 9 T. In this paper, we present the structure and physical properties of Ce2PdGa10 and compared them to CePdGa6.  相似文献   
4.
Single crystal X‐ray structural determinations for Na30.5Ag2.6(2)Ga57.4(2) and Na30.5Ag6.4(2)Ga53.6(2) (P6/mmm, Z = 1) reveal Ga3 triangles, Ga12 icosahedra, and Ga18 hexacapped hexa gonal prisms that are interconnected into a three‐dimensional network. Silver substitutes on the outer gallium sites of the Ga18 unit and presumably stabilizes the structure by reduction of the overall electron count. The two compositions are close to the limits of a nonstoichiometry region in Ga—Ag content, whereas the sodium content does not vary significantly. Stacking of the (Ga, Ag)18 “drums” along creates a channel in which some typically less well localized sodium atoms reside; other sodium cations lie between the clusters and bond to gallium atoms in typical roles. Apparently isotypic analogues of this structure that are more or less well ordered are also known for other combinations of elements. Extended Hückel MO and band calculations were performed in order to gain a better understanding of the silver compound. The variable electron count observed falls in a region of relatively nonbonding states with only a small dependence on energy.  相似文献   
5.
The rare earth ruthenium gallides Ln2Ru3Ga5 (Ln = La, Ce, Pr, Nd, Sm) were prepared by arc‐melting of cold‐pressed pellets of the elemental components. They crystallize with a tetragonal structure (P4/mnc, Z = 4) first reported for U2Mn3Si5. The crystal structures of the cerium and samarium compounds were refined from single‐crystal X‐ray data, resulting in significant deviations from the ideal compositions: Ce2Ru2.31(1)Ga5.69(1), a = 1135.10(8) pm, c = 580.58(6) pm, RF = 0.022 for 742 structure factors; Sm2Ru2.73(2)Ga5.27(2), a = 1132.95(9) pm, c = 562.71(6) pm, RF = 0.026 for 566 structure factors and 32 variable parameters each. The deviations from the ideal compositions 2:3:5 are discussed. A mixed Ru/Ga occupancy occurs only for one atomic site. The displacement parameters are relatively large for atoms with mixed occupancy within their coordination shell and small for atoms with no neighboring sites of mixed occupancy. Chemical bonding is analyzed on the basis of interatomic distances. Ln–Ga bonding is stronger than Ln–Ru bonding. Ru–Ga bonding is strong and Ru–Ru bonding is weak. The Ga–Ga interactions are of similar strength as in elemental gallium.  相似文献   
6.
Single crystals of Tb4MGa12 (M=Pd, Pt) have been synthesized. The isostructural compounds crystallize in the cubic space group , with Z=2 and lattice parameters: a=8.5940(5) and 8.5850(3) Å for Tb4PdGa12 and Tb4PtGa12, respectively. The crystal structure consists of corner-sharing MGa6 octahedra and TbGa3 cuboctahedra. Magnetic measurements suggest that Tb4PdGa12 is an antiferromagnetic metamagnet with a Néel temperature of 16 K, while the Pt analog orders at TN=12 K.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号