首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   2篇
  国内免费   9篇
化学   56篇
力学   1篇
综合类   1篇
物理学   6篇
  2023年   4篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   7篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1983年   1篇
排序方式: 共有64条查询结果,搜索用时 529 毫秒
1.
We have optimized a method for the determination of intracellular glutathione by high-performance liquid chromatography, using fluorimetric detection. To minimize artifacts and provide an accurate determination of intracellular glutathione, cell extracts were prepared using extraction conditions specifically designed to inhibit autoxidation and enzymatic degradation of glutathione. The sensitivity of the method was enhanced by adjusting the dansyl chloride derivatization reaction with regard to parameters such as pH, reaction time and dansyl chloride concentration. Both oxidized and reduced forms of glutathione were quantified using the refined method in extracts of oxidatively stressed J774A.1 mouse macrophage cells and reflected an expected shift in cellular redox status.  相似文献   
2.
Exhaled breath condensate is a promising, non-invasive, diagnostic sample obtained by condensation of exhaled breath. Starting from a historical perspective of early attempts of breath testing towards the contemporary state-of-the-art breath analysis, this review article focuses mainly on the progress in determination of non-volatile compounds in exhaled breath condensate. The mechanisms by which the aerosols/droplets of non-volatile compounds are formed in the airways are discussed with methodological consequences for sampling. Dilution of respiratory droplets is a major problem for correct clinical interpretation of the measured data and there is an urgent need for standardization of EBC. This applies also for collection instrumentation and therefore various commercial and in-house built devices are described and compared with regard to their design, function and collection parameters. The analytical techniques and methods for determination of non-volatile compounds as potential markers of oxidative stress and lung inflammation are scrutinized with an emphasis on method suitability, sensitivity and appropriateness. The relevance of clinical findings for each group of possible non-volatile markers of selected pulmonary diseases and methodological recommendations with emphasis on interdisciplinary collaboration that is essential for future development into a fully validated clinical diagnostic tool are given.  相似文献   
3.
A comprehensive review of the development of assays, bioprobes, and biosensors using quantum dots (QDs) as integrated components is presented. In contrast to a QD that is selectively introduced as a label, an integrated QD is one that is present in a system throughout a bioanalysis, and simultaneously has a role in transduction and as a scaffold for biorecognition. Through a diverse array of coatings and bioconjugation strategies, it is possible to use QDs as a scaffold for biorecognition events. The modulation of QD luminescence provides the opportunity for the transduction of these events via fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), charge transfer quenching, and electrochemiluminescence (ECL). An overview of the basic concepts and principles underlying the use of QDs with each of these transduction methods is provided, along with many examples of their application in biological sensing. The latter include: the detection of small molecules using enzyme-linked methods, or using aptamers as affinity probes; the detection of proteins via immunoassays or aptamers; nucleic acid hybridization assays; and assays for protease or nuclease activity. Strategies for multiplexed detection are highlighted among these examples. Although the majority of developments to date have been in vitro, QD-based methods for ex vivo biological sensing are emerging. Some special attention is given to the development of solid-phase assays, which offer certain advantages over their solution-phase counterparts.  相似文献   
4.
以国产交联琼脂糖6FF为基质,分别以环氧氯丙烷(ECH)、1,4-丁二醇二缩水甘油醚(BDGE)为活化剂,偶联谷胱甘肽(GSH)得到两种连接臂长度不同的GSH亲和层析介质,并以两种自制介质对融合蛋白GST-ADAM15进行了纯化。结果表明:GSH-ECH-琼脂糖凝胶和GSH-BDGE-琼脂糖凝胶的配基密度分别达到了30~35μmol/mL和15~18μmol/mL,经两种介质纯化后的GST融合蛋白,纯度均达到95%以上,BDGE活化对目标蛋白的回收率占总蛋白26%,ECH活化为13%。相对而言,由于连接臂长度的不同,BDGE活化的介质纯化效果优于ECH。  相似文献   
5.
Glutathione (GSH-reduced form) is a tripeptide that plays a vital role as an antioxidant to remove xenobiotics in the human body and changes in GSH levels are a marker for the progression of various diseases. In this context, a highly sensitive non-enzymatic electrochemical biosensor for the detection of GSH has been developed using reduced graphene oxide Manganese oxide (rGMnO) nanocomposite as the nano-interface. Initially, graphene oxide was synthesized by Hummer's method and then thermally reduced in the presence of MnO2 in a blast furnace to obtain rGMnO nanocomposite. The nanocomposite was characterized to validate its structure and morphological properties via Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry and amperometry studies showed that upon the addition of GSH, the Pt/rGMnO modified working electrode exhibited a linear response in the range of 1–100 μM at an input voltage of −0.62 V. The developed sensor was found to have a sensitivity of 0.3256 μA μM−1 and LOD of 970 nM with a recovery of 92–104 % in real blood serum samples.  相似文献   
6.
The sustained high release of catecholamines to circulation is a deleterious condition that may induce toxicity, which seems to be partially related to the products formed by oxidation of catecholamines that can be further conjugated with glutathione (GSH). The aim of the present study was to develop a method for the determination of GSH adducts of adrenaline in biological samples. Two position isomers of the glutathion-S-yl-adrenaline were synthesized and characterized by HPLC using diode array, coulometric and mass detectors. A method for the extraction of these adducts from human plasma was also developed, based on adsorption to activated alumina, which showed adequate recoveries and proved to be crucial in removing interferences from plasma. The selectivity, precision and linearity of the method were all within the accepted values for these parameters. Furthermore, the sensitivity of this method allows the detection of adduct amounts that are within the range of the expected concentrations for these adducts under certain pathophysiological conditions and/or drug treatments. In conclusion, the development of this method allows the direct analysis of GSH adducts of adrenaline in human plasma, providing a valuable tool for the study of the catecholamine oxidation process and its related toxicity.  相似文献   
7.
Inducible, microsomal prostaglandin E synthase 1 (mPGES-1), the terminal enzyme in the prostaglandin (PG) biosynthetic pathway, constitutes a promising therapeutic target for the development of new anti-inflammatory drugs. To elucidate structure–function relationships and to enable structure-based design, an mPGES-1 homology model was developed using the three-dimensional structure of the closest homologue of the MAPEG family (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism), mGST-1. The ensuing model of mPGES-1 is a homo-trimer, with each monomer consisting of four membrane-spanning segments. Extensive structure refinement revealed an inter-monomer salt bridge (K26-E77) as well as inter-helical interactions within each monomer, including polar hydrogen bonds (e.g. T78-R110-T129) and hydrophobic π-stacking (F82-F103-F106), all contributing to the overall stability of the homo-trimer of mPGES-1. Catalytic co-factor glutathione (GSH) was docked into the mPGES-1 model by flexible optimization of both the ligand and the protein conformations, starting from the initial location ascertained from the mGST-1 structure. Possible binding site for the substrate, prostaglandin H2 (PGH2), was identified by systematically probing the refined molecular structure of mPGES-1. A binding model was generated by induced fit docking of PGH2 in the presence of GSH. The homology model prescribes three potential inhibitor binding sites per mPGES-1 trimer. This was further confirmed experimentally by equilibrium dialysis study which generated a binding stoichiometric ratio of approximately three inhibitor molecules to three mPGES-1 monomers. The structural model that we have derived could serve as a useful tool for structure-guided design of inhibitors for this emergently important therapeutic target.  相似文献   
8.
构建了颗粒体系热力学特征函数, 确定了宏观尺度不可逆过程的迁移系数, 将颗粒物质流体动力学理论应用于密砂的三轴加载力学性质分析, 得到了应力-应变关系和体积应变-应变关系, 还得到了颗粒温度演化过程.   相似文献   
9.
Sulodexide (SDX), a purified glycosaminoglycan mixture used to treat vascular diseases, has been reported to exert endothelial protective effects against ischemic injury. However, the mechanisms underlying these effects remain to be fully elucidated. The emerging evidence indicated that a relatively high intracellular concentration of reduced glutathione (GSH) and a maintenance of the redox environment participate in the endothelial cell survival during ischemia. Therefore, the aim of the present study was to examine the hypothesis that SDX alleviates oxygen–glucose deprivation (OGD)-induced human umbilical endothelial cells’ (HUVECs) injury, which serves as the in vitro model of ischemia, by affecting the redox state of the GSH: glutathione disulfide (GSSG) pool. The cellular GSH, GSSG and total glutathione (tGSH) concentrations were measured by colorimetric method and the redox potential (ΔEh) of the GSSG/2GSH couple was calculated, using the Nernst equation. Furthermore, the levels of the glutamate–cysteine ligase catalytic subunit (GCLc) and the glutathione synthetase (GSS) proteins, a key enzyme for de novo GSH synthesis, were determined using enzyme-linked immunoassay (ELISA). We demonstrated that the SDX treatment in OGD conditions significantly elevated the intracellular GSH, enhanced the GSH:GSSG ratio, shifting the redox potential to a more pro-reducing status. Furthermore, SDX increased the levels of both GCLc and GSS. The results show that SDX protects the human endothelial cells against ischemic stress by affecting the GSH levels and cellular redox state. These changes suggest that the reduction in the ischemia-induced vascular endothelial cell injury through repressing apoptosis and oxidative stress associated with SDX treatment may be due to an increase in GSH synthesis and modulation of the GSH redox system.  相似文献   
10.
Li Hua CHEN 《中国化学快报》2006,17(12):1619-1622
Recently, surface plasmon resonance (SPR) become more and more popular without the need of the label technology1-3. However, sometimes, a number of experimental artifacts complicate the final biosensor analysis4-7. The utilization of a reference surface c…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号