首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   3篇
化学   51篇
物理学   3篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2008年   2篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有54条查询结果,搜索用时 296 毫秒
1.
Factor Xa is a serine protease which activates thrombin and plays a key regulatory role in the blood-coagulation cascade. Factor Xa is at the crossroads of the extrinsic and intrinsic pathways of coagulation and, hence, has become an important target for the design of anti-thrombotics (inhibitors). It is not known to be involved in other processes than hemostasis and its binding site is different to that of other serine proteases, thus facilitating selective inhibition. The design of high-affinity selective inhibitors of factor Xa requires knowledge of the structural and dynamical characteristics of its active site. The three-dimensional structure of factor Xa was resolved by X-ray crystallography and refined at 2.2 Å resolution by Padmanabhan and collaborators. In this article we present results from molecular dynamics simulations of the catalytic domain of factor Xa in aqueous solution. The simulations were performed to characterise the mobility and flexibility of the residues delimiting the unoccupied binding site of the enzyme, and to determine hydrogen bonding propensities (with protein and with solvent atoms) of those residues in the active site that could interact with a substrate or a potential inhibitor. The simulation data is aimed at facilitating the design of high-affinity selective inhibitors of factor Xa.  相似文献   
2.
The ability of the GROMOS96 force field to reproduce partition constants between water and two less polar solvents (cyclohexane and chloroform) for analogs of 18 of the 20 naturally occurring amino acids has been investigated. The estimations of the solvation free energies in water, in cyclohexane solution, and chloroform solution are based on thermodynamic integration free energy calculations using molecular dynamics simulations. The calculations show that while the force field reproduces the experimental solvation free energies of nonpolar analogs with reasonable accuracy the solvation free energies of polar analogs in water are systematically overestimated (too positive). The dependence of the calculated free energies on the atomic partial charges was also studied.  相似文献   
3.
Thermodynamic data are often used to calibrate or test amomic-level (AL) force fields for molecular dynamics (MD) simulations. In contrast, the majority of coarse-grained (CG) force fields do not rely extensively on thermodynamic quantities. Recently, a CG force field for lipids, hydrocarbons, ions, and water, in which approximately four non-hydrogen atoms are mapped onto one interaction site, has been proposed and applied to study various aspects of lipid systems. To date, no extensive investigation of its capability to describe salvation thermodynamics has been undertaken. In the present study, a detailed picture of vaporization, solvation, and phase-partitioning thermodynamics for liquid hydrocarbons and water was obtained at CG and AL resolutions, in order to compare the two types or models and evaluate their ability to describe thermodynamic properties in the temperature range between 263 and 343 K. Both CG and AL models capture the experimental dependence of the thermodynamic properties on the temperature, albeit a systematically weaker dependence is found for the CG model. Moreover, deviations are found for solvation thermodynamics and for the corresponding enthalpy-entropy compensation for the CG model. Particularly water/oil repulsion seems to be overestimated. However, the results suggest that the thermodynamic properties considered should be reproducible by a CG model provided it is reparametrized on the basis of these liquid-phase properties.  相似文献   
4.
Electronic polarizability is usually treated implicitly in molecular simulations, which may lead to imprecise or even erroneous molecular behavior in spatially electronically inhomogeneous regions of systems such as proteins, membranes, interfaces between compounds, or mixtures of solvents. The majority of available molecular force fields and molecular dynamics simulation software packages does not account explicitly for electronic polarization. Even the simplest charge‐on‐spring (COS) models have only been developed for few types of molecules. In this work, we report a polarizable COS model for cyclohexane, as this molecule is a widely used solvent, and for linear alkanes, which are also used as solvents, and are the precursors of lipids, amino acid side chains, carbohydrates, or nucleic acid backbones. The model is an extension of a nonpolarizable united‐atom model for alkanes that had been calibrated against experimental values of the density, the heat of vaporization and the Gibbs free energy of hydration for each alkane. The latter quantity was used to calibrate the parameters governing the interaction of the polarizable alkanes with water. Subsequently, the model was tested for other structural, thermodynamic, dielectric, and dynamic properties such as trans/gauche ratios, excess free energy, static dielectric permittivity, and self‐diffusion. A good agreement with the experimental data for a large set of properties for each considered system was obtained, resulting in a transferable set of polarizable force‐field parameters for CH2, CH3, and CH4 moieties. © 2014 Wiley Periodicals, Inc.  相似文献   
5.
Low-bandgap organic semiconductors have attracted much attention for their multiple applications in optoelectronics. However, the realization of narrow bandgap is challenging particularly for small molecules. Herein, we have synthesized four quinoidal compounds, i. e., QSN3 , QSN4 , QSN5 and QSN6 , with electron rich S,N-heteroacene as the quinoidal core and indandione as the end-groups. The optical bandgap of the quinoidal compounds is systematically decreased with the extension of quinoidal skeleton, while maintaining stable closed-shell ground state. QSN6 absorbs an intense absorption in the first and second near-infrared region in the solid state, and has extremely low optical bandgap of 0.74 eV. Cyclic voltammetry analyses reveal that the lowest unoccupied molecular orbital (LUMO) energy levels of the four quinoidal compounds all lie below −4.1 eV, resulting in good electron-transporting characteristics in organic thin-film transistors. These results demonstrated that the combination of π-extended quinoidal core and end-groups in quinoidal compounds is an effective strategy for the synthesis of low-bandgap small molecules with good stability.  相似文献   
6.
A new force field for the simulation of dipalmitoylphosphatidylcholine (DPPC) in the liquid‐crystalline, fluid phase at zero surface tension is presented. The structure of the bilayer with the area per lipid (0.629 nm2; experiment 0.629–0.64 nm2), the volume per lipid (1.226 nm3; experiment 1.229–1.232 nm3), and the ordering of the palmitoyl chains (order parameters) are all in very good agreement with experiment. Experimental electron density profiles are well reproduced in particular with regard to the penetration of water into the bilayer. The force field was further validated by simulating the spontaneous assembly of DPPC into a bilayer in water. Notably, the timescale on which membrane sealing was observed using this model appears closer to the timescales for membrane resealing suggested by electroporation experiments than previous simulations using existing models. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
7.
The importance of β‐peptides lies in their ability to mimic the conformational behavior of α‐peptides, even with a much shorter chain length, and in their resistance to proteases. To investigate the effect of substitution of β‐peptides on their dominant fold, we have carried out a molecular‐dynamics (MD) simulation study of two tetrapeptides, Ac‐(2R,3S)‐β2,3hVal(αMe)‐(2S)‐β2hPhe‐(R)‐β3hLys‐(2R,3S)‐β2,3‐Ala(αMe)‐NH2, differing in the substitution at the Cα of Phe2 (pepF with F, and pepH with H). Three simulations, unrestrained (UNRES), using 3J‐coupling biasing with local elevation in combination with either instantaneous (INS) or time‐averaging (AVE) NOE distance restraining, were carried out for each peptide. In the unrestrained simulations, we find three (pepF) and two (pepH) NOE distance bound violations of maximally 0.22 nm that involve the terminal residues. The restrained simulations match both the NOE distance bounds and 3J‐values derived from experiment. The fluorinated peptide shows a slightly larger conformational variability than the non‐fluorinated one.  相似文献   
8.
4‐Hydroxyphenylpyruvate dioxygenase is a relevant target in both pharmaceutical and agricultural research. We report on molecular dynamics simulations and free energy calculations on this enzyme, in complex with 12 inhibitors for which experimental affinities were determined. We applied the thermodynamic integration approach and the more efficient one‐step perturbation. Even though simulations seem well converged and both methods show excellent agreement between them, the correlation with the experimental values remains poor. We investigate the effect of slight modifications on the charge distribution of these highly conjugated systems and find that accurate models can be obtained when using improved force field parameters. This study gives insight into the applicability of free energy methods and current limitations in force field parameterization. © 2011 Wiley Periodicals, Inc. J Comput Chem 2011  相似文献   
9.
Force field parameters for polarizable coarse‐grained (CG) supra‐atomic models of liquid cyclohexane are proposed. Two different bead sizes were investigated, one representing two fine‐grained (FG) CH2r united atoms of the cyclohexane ring, and one representing three FG CH2r united atoms. Electronic polarizability is represented by a massless charge‐on‐spring particle connected to each CG bead. The model parameters were calibrated against the experimental density and heat of vaporization of liquid cyclohexane, and the free energy of cyclohexane hydration. Both models show good agreement with thermodynamic properties of cyclohexane, yet overestimate the self‐diffusion. The dielectric properties of the polarizable models agree very well with experiment. © 2015 Wiley Periodicals, Inc.  相似文献   
10.
This article presents a reoptimization of the GROMOS 53A6 force field for hexopyranose-based carbohydrates (nearly equivalent to 45A4 for pure carbohydrate systems) into a new version 56A(CARBO) (nearly equivalent to 53A6 for non-carbohydrate systems). This reoptimization was found necessary to repair a number of shortcomings of the 53A6 (45A4) parameter set and to extend the scope of the force field to properties that had not been included previously into the parameterization procedure. The new 56A(CARBO) force field is characterized by: (i) the formulation of systematic build-up rules for the automatic generation of force-field topologies over a large class of compounds including (but not restricted to) unfunctionalized polyhexopyranoses with arbritrary connectivities; (ii) the systematic use of enhanced sampling methods for inclusion of experimental thermodynamic data concerning slow or unphysical processes into the parameterization procedure; and (iii) an extensive validation against available experimental data in solution and, to a limited extent, theoretical (quantum-mechanical) data in the gas phase. At present, the 56A(CARBO) force field is restricted to compounds of the elements C, O, and H presenting single bonds only, no oxygen functions other than alcohol, ether, hemiacetal, or acetal, and no cyclic segments other than six-membered rings (separated by at least one intermediate atom). After calibration, this force field is shown to reproduce well the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. As a result, the 56A(CARBO) force field should be suitable for: (i) the characterization of the dynamics of pyranose ring conformational transitions (in simulations on the microsecond timescale); (ii) the investigation of systems where alternative ring conformations become significantly populated; (iii) the investigation of anomerization or epimerization in terms of free-energy differences; and (iv) the design of simulation approaches accelerating the anomerization process along an unphysical pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号