首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   5篇
数学   1篇
物理学   1篇
  2017年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
In this work, a simple, fast and reproducible method is presented for the determination of fibre/liquid-phase and fibre/gas-phase partition coefficients of five chlorinated ethenes on a poly-(dimethylsiloxane), PDMS-coated, solid-phase microextraction fibre, by employing a headspace HS-SPME coupled with gas chromatography. The partition coefficients were estimated by a numerical method using a Level-I fugacity method coupled with parameter-estimation software. Dimensionless partition coefficients between SPME fibre and liquid as well as gas phases were obtained at temperatures of 10 °C, 25 °C and 30 °C. The partition coefficients of the fibre and the gas phase, K fg, increase with decreasing temperature by a factor of ≈2 to 6, and they are directly proportional to the linear slope of the regression line. The same tendency is observed for the partition coefficient of the fibre and liquid phase, K fw, in a factor ≈1.2 to 2.0. The sorption enthalpy is higher in the gas phase; therefore, the sorption onto the fibre is favoured at lower temperatures. The correlation of the log K ow versus log K fw and log K oa versus log K fg shows a linear relationship with the number of chlorine atoms in the C = C molecule. Long-term experiments resulted in sorption to Teflon surfaces and possible losses in 43 mL vials, not observed in 250 mL Boston bottles.  相似文献   
2.
A spatial distribution multimedia fate model is proposed for the rigorous simulation of the environmental multimedia fate of hazardous chemicals emitted from a variety of sources. To solve the relevant equation, we introduce an explicit finite difference method applied to uniform grids. We assessed the numerical properties of the model, including stability and accuracy. A new dimensionless number (multimedia transport number) is proposed for determining the numerical stability of the unsteady-state method. The model was verified by comparison with analytical solutions for the transport of non-conservative substances in two-phase open-channel flow. The spatial resolution of the spatial distribution model was tested via a comparison with a general multimedia fate model in a practical application related to toluene emissions in Seoul, South Korea.  相似文献   
3.
We employ two thermodynamic approaches, based on the equal fugacities and the equal activities, to predict the gas hydrate equilibrium dissociation conditions in the porous media. The predictions are made for the hydrate systems, CH4/H2O, C2H6/H2O, C3H8/H2O, CO2/H2O, CH4/CO2/H2O, C3H8/CH4/C2H6/H2O, and CH4/CH3OH/H2O. For the non-hydrate phase, we used the Trebble–Bishnoi equation in the fugacity approach and the Soave–Redlich–Kwong equation in the activity approach. For the hydrate phase, the van der Waals–Platteeuw model incorporated with the capillary model of Llamedo et al. [M. Llamedo, R. Anderson, B. Tohidi, Am. Mineral. 89 (2004) 1264–1270] was used in the two approaches. The predictions are found to be in satisfactory to good agreement with the experimental data. The predictive ability of the fugacity approach is better than that of the activity approach.  相似文献   
4.
Modeling the solubilities of fatty acids is important because these compounds are used in various industries. In this work, a thermodynamic model based on Redlich–Kwong equation of state with Kwak–Mansoori mixing rules was used to model the solubilities of fatty acids in supercritical carbon dioxide. The model uses only one adjustable parameter and this parameter varies linearly with the chain length of the fatty acid. Therefore, this model can be potentially used to predict the solubilities of various fatty acids in supercritical carbon dioxide.  相似文献   
5.
Equations of state that are based on the lattice-statistics approach use Guggenheim's quasi-chemical approximation to describe the non-randomness in the mixture due to the energetic interactions between the molecules. For ternary and higher-component systems the non-randomness expression is complex and requires an iterative calculation procedure. We have shown that the non-randomness parameters play a negligible role in the application of the GCLF-EoS model (based on the Panayiotou–Vera EoS) for predicting vapor–liquid equilibria. Omission of the non-randomness parameters from such calculations can significantly improve the computation efficiency. Binary, ternary, and quaternary vapor–liquid equilibria predictions were made including polystyrene, polyvinyl acetate, polyethylene, and polypropylene in polar and non-polar solvents to test the theory.  相似文献   
6.
对单组分非理想气体,推导了它的逸度因子的微分方程式。对多组分非理想气体,推导了各组分逸度因子满足的微分方程式,定义了一个总逸度因子,并找到了总逸度因子和各组分逸度因子之间的关系。同样,对非理想溶液,推导了各组分活度系数满足的微分方程式,定义了非理想溶液的总活度系数,并找到了两者满足的关系。最后分析了逸度因子和活度系数之间的异同点。  相似文献   
7.
We analyze canonical fermion determinants, i.e., fermion determinants projected to a fixed quark number q  . The canonical determinants are computed using a dimensional reduction formula and are studied for pure SU(3)SU(3) gauge configurations in a wide range of temperatures. It is demonstrated that the center sectors of the Polyakov loop very strongly manifest themselves in the behavior of the canonical determinants in the deconfined phase, and we discuss physical implications of this finding. Furthermore the distribution of the quark sectors is studied as a function of the temperature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号