首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   638篇
  免费   2篇
  国内免费   16篇
化学   101篇
晶体学   3篇
力学   423篇
综合类   2篇
数学   20篇
物理学   107篇
  2023年   2篇
  2021年   2篇
  2020年   23篇
  2019年   6篇
  2018年   1篇
  2017年   23篇
  2016年   31篇
  2015年   23篇
  2014年   41篇
  2013年   39篇
  2012年   9篇
  2011年   50篇
  2010年   37篇
  2009年   56篇
  2008年   52篇
  2007年   54篇
  2006年   32篇
  2005年   24篇
  2004年   26篇
  2003年   29篇
  2002年   21篇
  2001年   12篇
  2000年   7篇
  1999年   7篇
  1998年   18篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1981年   1篇
排序方式: 共有656条查询结果,搜索用时 0 毫秒
1.
Inflation of balloons provides a straightforward way of achieving large biaxial deformations. Previous studies have shown that when a balloon bursts, crack propagation occurs at very high speed – much higher than would be expected from the low strain modulus and elastic wave velocity of the rubber. The present paper is concerned with studies of the deformation and fracture of cylindrical balloons. On inflation, the deformations of such a balloon pass through an unstable region but subsequently increase monotonically with pressure. In this relatively high pressure region, the ratio of the longitudinal and circumferential extension ratios is broadly in accord with expectations from high-strain elasticity theory when the ratio of the corresponding stresses is taken into account. On bursting, crack speeds up to around 300 m/s in this region. It is shown that these speeds are in accord with large increase in incremental moduli for the highly-strained rubber. Marked changes in crack tip profile observed at very high crack speeds are consistent with control of the rate of growth by inertia rather than by the viscoelastic properties of the rubber (as is believed to be the case at lower speeds). Consistent with this, various elastomers having different glass transition temperatures show similar crack growth behaviour in the very high speed region.  相似文献   
2.
Summary  Thermopiezoelastic materials have recently attracted considerable attention because of their potential use in intelligent or smart structural systems. The governing equations of a thermopiezoelastic medium are more complex due to the intrinsic coupling effects that take place among mechanical, electrical and thermal fields. In this analysis, we deal with the problem of a crack in a semi-infinite, transversely isotropic, thermopiezoelastic material by means of potential functions and Fourier transforms under steady heat-flux loading conditions. The problem is reduced to a singular integral equation that is solved. The thermal stress intensity factor for a crack situated in a cadmium selenide material is calculated. Received 20 March 2001; accepted for publication 18 October 2001  相似文献   
3.
Fatigue Loading and Life Prediction in Three Fretting Fatigue Fixtures   总被引:1,自引:0,他引:1  
Three fixtures for conducting laboratory fretting fatigue tests are described and their respective testing methods and the results of the analysis are compared. Each of these fixtures has been used to investigate the effects of various parameters of interest in fretting fatigue. These fixtures include a unique apparatus in which all load applied to the specimen is transferred to the fretting pads, an apparatus similar to many found in the literature where partial load transfer occurs across the pads, and a simplified dovetail fixture in which the clamping load, P, and the shear load, Q, are varied in phase. Select test conditions from prior experiments performed on identical material and resulting in similar lives ranging from one to ten million cycles from these fixtures are identified. The various testing conditions were used to compute the unique stress field for each case. The resulting contact stresses were used to calculate crack initiation based criteria, and to calculate stress intensity factors. The three fixtures were shown to be able to accommodate a range of loads, fretting pad contours, and specimen geometries that produced a variety of stress fields. A crack-initiation-based criterion was shown to predict the failure lives of thinner specimens accurately. The stress intensity factor calculations showed the possibility of a crack arresting for a stress field that decays rapidly and the possibility of a local minimum for K as a function of depth. The fixtures are shown to be complementary in generating data for development of robust fretting fatigue models that use these criteria.  相似文献   
4.
We study a one-dimensional model for fracture, identifying fractured areas with intervals on which a stress field exceeds a threshold value. When is a diffusion process, the cumulative numberN(l) of fractured areas whose length is greater thanl obeys a power lawCl p asl0 with probability one. The exponentp and the constantC are determined. The exponentp agrees with the Hausdorff dimension of the end points of fractured areas, i.e., –1(). Even if is self-similar with parameterH>0, i.e.,(cx)– is equivalent toc H {(x)–} for anyc>0, the exponentp does not depend solely onH;p=H, where(0, 1/H) is another parameter characterizing. Non-diffusion processes are given whereN(l) does not follow a power law.  相似文献   
5.
 Living tissues work with fantastic functions in soft and wet gel-like state. Thus, hydrogels have attracted much attention as excellent soft & wet materials, suitable for making artificial organs for medical treatments.However, conventional hydrogels are mechanically too weak for practical uses. We have created double network (DN) hydrogels with extremely high mechanical strength in order to overcome this problem. DN gels are interpenetrating network (IPN) hydrogels consisting of rigid polyelectrolyte and soft neutral polymer. Their excellent mechanical properties cannot be explained by the standard fracture theories. In this paper, we discuss about the toughening mechanism of DN gels in accordance with their characteristic behavior, such as large hysteresis and necking phenomenon. We also describe the results on tissue engineering application of DN gels.  相似文献   
6.
Graphene oxide (GO) was functionalized using three different diamines, namely ethylenediamine (EDA), 4,4′-diaminodiphenyl sulfone (DDS) and p-phenylenediamine (PPD) to reinforce an epoxy/glass fiber (EP/GF) composite laminate, with the aim of improving the overall composite mechanical performance. Different mechanical characterization techniques were used to determine the mechanical performance, including: tensile stress strain, double cantilever beam (DCB) mode-I fracture toughness and dynamic mechanical thermal analysis (DMTA). Scanning electron microscopy (SEM) was used to support the results and conclusions. The results demonstrated remarkable enhancements in the mechanical performance of EP/GF composite laminates by incorporation of functionalized graphene oxide (FGO) nanofiller, whilst the mechanical performance of the GO reinforced composite only improved marginally. Finally, the mechanical performance of the EP/GF/FGO multi-scale composites was found to be dependent on the type of FGO functional groups; of which EDA exhibited the highest performance. These investigations confirmed that the EDA-FGO-reinforced EP/GF composites possess excellent potential to be used as multifunctional engineering materials in industrial applications.  相似文献   
7.
The purpose of the present work is to study the mixed mode fracture of a piezoelectric–piezomagnetic composite with two un-coaxial cracks parallel to the interface and each in a layer. Methods of generalized dislocation simulation, Green’s function, Cauchy singular integral equation and Lobatto–Chebyshev collocation are combined together to get the numerical results of mechanical strain energy release rate (MSERR). Three kinds of effects are revealed by parametric studies, i.e., the free-surface effect, the shielding effect and the interference effect, and they are used to interpret the characteristics of COD and MSERR curves. In addition, the effects of shear loading, magnetic loading and electric loading on MSERR are also disclosed, respectively, by varying the corresponding loading factor.  相似文献   
8.
Naturally fractured reservoirs contain about 25–30% of the world supply of oil. In these reservoirs, fractures are the dominant flow path. Therefore, a good understanding of transfer parameters such as relative permeability as well as flow regimes occurring in a fracture plays an important role in developing and improving oil production from such complex systems. However, in contrast with gas–liquid flow in a single fracture, the flow of heavy oil and water has received less attention. In this research, a Hele-Shaw apparatus was built to study the flow of water in presence of heavy oil and display different flow patterns under different flow rates and analyze the effect of fracture orientations on relative permeability curves as well as flow regimes. The phase flow rates versus phase saturation results were converted to experimental relative permeability curves. The results of the experiments demonstrate that, depending on fracture and flow orientation, there could be a significant interference between the phases flowing through the fracture. The results also reveal that both phases can flow in both continuous and discontinuous forms. The relative permeability curves show that the oil–water relative permeability not only depends on fluid saturations and flow patterns but also fracture orientation.  相似文献   
9.
We study the mechanical response, and tearing features of crêpe paper, a two-dimensional, very anisotropic material, with one direction much less stiff than the other one. Depending on how the soft direction has been pre-stretched or not, the apparent Young modulus of the material can be varied over a broad range, while its fracture energy remains unaltered. The classical tearing concertina problem shows that a macroscopic measurement (the shape of the teared region) provides a direct access to the fracture properties of the material (effective Young's modulus, and fracture energy). The overall discussion is conducted in the frame of Griffith's theory of fracture.  相似文献   
10.
We consider the Griffith fracture model in two spatial dimensions, and prove existence of strong minimizers, with closed jump set and continuously differentiable deformation fields. One key ingredient, which is the object of the present paper, is a generalization to the vectorial situation of the decay estimate by De Giorgi, Carriero, and Leaci. This is based on replacing the coarea formula by a method to approximate SBDp functions with small jump set by Sobolev functions, and is restricted to two dimensions. The other two ingredients will appear in companion papers and consist respectively in regularity results for vectorial elliptic problems of the elasticity type and in a method to approximate in energy GSBDp functions by SBVp ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号