首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   5篇
  国内免费   2篇
化学   79篇
数学   1篇
物理学   10篇
  2023年   3篇
  2022年   19篇
  2021年   18篇
  2020年   14篇
  2019年   7篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2006年   4篇
  1983年   1篇
排序方式: 共有90条查询结果,搜索用时 31 毫秒
1.
The emergence of multi‐drug resistant (MDR) bacteria and dynamic pattern of infectious diseases demand to develop alternative and more effective therapeutic strategies. Silver nanoparticles (AgNPs) are among the most widely commercialized engineered nanomaterials, because of their unique properties and increasing use for various applications in nanomedicine. This study for the first time aimed to evaluate the antibacterial and antibiofilm activities of newly synthesized nanochelating based AgNPs against several Gram‐positive and ‐negative nosocomial pathogens. Nanochelating technology was used to design and synthesize the AgNPs. The cytotoxicity was tested in human cell line using the MTT assay. AgNPs minimal inhibitory concentration (MIC) was determined by standard broth microdilution. Antibiofilm activity was assayed by a microtiter‐plate screening method. The two synthesized AgNPs including AgNPs (A) with the size of about 20‐25 nm, and AgNPs (B) with 30‐35 nm were tested against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii, and Pseudomonas aeruginosa. AgNPs exhibited higher antibacterial activity against Gram‐positive strains. AgNPs were found to significantly inhibit the biofilm formation of tested strains in concentration 0.01 to 10 mg/mL. AgNPs (A) showed significant effective antibiofilm activity compared to AgNPs (B). In summary, our results showed the promising antibacterial and antibiofilm activity of our new nanochelating based synthesized AgNPs against several nosocomial pathogens.  相似文献   
2.
Effective antimicrobial polymers have been attracting more interests because of the low propensity to cause drug-resistant microorganisms. The recent progresses in antimicrobial polymers are updated according to the action approaches, that is, antimicrobial polymers with free mobility or fixed on surfaces, respectively. Free antimicrobial polymers kill pathogens majorly via electrostatic interaction followed by disruption of the cell membranes; strong antimicrobial activity of primary/secondary amines, new chemical units, and peptides without facial amphiphilicity are highlighted; and the dependences on amphiphilicity, topology, and self-assembly profiles are summarized. Antimicrobial polymers fixed on surfaces kill pathogens via interaction with the cell membranes of pathogens via electrostatic or hydrophobic interaction; approaches to antimicrobial surfaces based on covalently grafting, anchoring, and bulk-mixing of polymers are summarized; and new designs of sustainable antimicrobial surfaces and hydrogels are highlighted. Deep biology understanding and development strategies of materials are suggested for the future. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 632–639  相似文献   
3.
Acoustic cavitation in a liquid medium generates several physical and chemical effects. The oscillation and collapse of cavitation bubbles, driven at low ultrasonic frequencies (e.g., 20 kHz), can generate strong shear forces, microjets, microstreaming and shockwaves. Such strong physical forces have been used in cleaning and flux improvement of ultrafiltration processes. These physical effects have also been shown to deactivate pathogens. The efficiency of deactivation of pathogens is not only dependent on ultrasonic experimental parameters, but also on the properties of the pathogens themselves. Bacteria with thick shell wall are found to be resistant to ultrasonic deactivation process. Some evidence does suggest that the chemical effects (radicals) of acoustic cavitation are also effective in deactivating pathogens. Another aspect of cleaning, namely, purification of water contaminated with organic and inorganic pollutants, has also been discussed in detail. Strong oxidising agents produced within acoustic cavitation bubbles could be used to degrade organic pollutants and convert toxic inorganic pollutants to less harmful substances. The effect of ultrasonic frequency and surface activity of solutes on the sonochemical degradation efficiency has also been discussed in this overview.  相似文献   
4.
The largely unknown secondary metabolism of the plant pathogenic fungus Hymenoscyphus pseudoalbidus was investigated by use of the CLSA method. A set of volatile lactones was identified by GC/MS. The lactones were synthesized and used in bioassays in which one of the compounds was found to be a strong germination inhibitor for ash seeds, causing necroses in the plant tissue.  相似文献   
5.
A multifunctional motile microtrap is developed that is capable of autonomously attracting, trapping, and destroying pathogens by controlled chemoattractant and therapeutic agent release. The onion‐inspired multi‐layer structure contains a magnesium engine core and inner chemoattractant and therapeutic layers. Upon chemical propulsion, the magnesium core is depleted, resulting in a hollow structure that exposes the inner layers and serves as structural trap. The sequential dissolution and autonomous release of the chemoattractant and killing agents result in long‐range chemotactic attraction, trapping, and destruction of motile pathogens. The dissolved chemoattractant (l ‐serine) significantly increases the accumulation and capture of motile pathogens (E. coli) within the microtrap structure, while the internal release of silver ions (Ag+) leads to lysis of the pathogen accumulated within the microtrap cavity.  相似文献   
6.
The purpose of the study was to select an environmentally friendly plant biopesticide to protect seed potatoes against phytopathogens. The scope included the evaluation of the antimicrobial activities of 22 plant water extracts, 22 water-glycol extracts, and 3 subcritical carbon dioxide extracts using the agar diffusion method against 10 potato phytopathogens. For the most effective extracts, minimal inhibitory concentration (MIC), chemical composition analysis by gas chromatography–mass spectrometry and in situ assays on seed potatoes were performed. Garlic water extract was finally selected as the most effective in phytopathogen growth inhibition, both in vitro and in situ, with MIC values ranging between 6.3–25 mg/mL. 5-Hydroxymethylfurfural was determined to be the main component of this extract (33.24%). Garlic water extract was proposed as a potential biopesticide against potato phytopathogens.  相似文献   
7.
Rose bengal has been used in the diagnosis of ophthalmic disorders and liver function, and has been studied for the treatment of solid tumor cancers. To date, the antibacterial activity of rose bengal has been sporadically reported; however, these data have been generated with a commercial grade of rose bengal, which contains major uncontrolled impurities generated by the manufacturing process (80–95% dye content). A high-purity form of rose bengal formulation (HP-RBf, >99.5% dye content) kills a battery of Gram-positive bacteria, including drug-resistant strains at low concentrations (0.01–3.13 μg/mL) under fluorescent, LED, and natural light in a few minutes. Significantly, HP-RBf effectively eradicates Gram-positive bacterial biofilms. The frequency that Gram-positive bacteria spontaneously developed resistance to HP-RB is extremely low (less than 1 × 10−13). Toxicity data obtained through our research programs indicate that HP-RB is feasible as an anti-infective drug for the treatment of skin and soft tissue infections (SSTIs) involving multidrug-resistant (MDR) microbial invasion of the skin, and for eradicating biofilms. This article summarizes the antibacterial activity of pharmaceutical-grade rose bengal, HP-RB, against Gram-positive bacteria, its cytotoxicity against skin cells under illumination conditions, and mechanistic insights into rose bengal’s bactericidal activity under dark conditions.  相似文献   
8.
为了探究食源性致病菌芽孢的拉曼特征指纹图谱,实现快速识别,该研究以产气荚膜梭菌(C.perfringens)、艰难梭菌(C.difficile)和蜡样芽孢杆菌(B.cereus)的芽孢为研究对象,以柠檬酸钠还原法制备的AgNPs溶胶为基底材料,用SERS技术对芽孢进行拉曼光谱检测,解析食源性致病菌芽孢的分子结构、不同芽孢之间的异同之处。将3种食源性致病菌芽孢的SERS光谱与主成分分析(PCA)和系统聚类分析(HCA)相结合并进行对比分析,实现不同种属食源性致病菌芽孢的定性识别。结果表明,不同食源性致病菌芽孢的SERS光谱的特异性和重现性良好。芽孢光谱中Ca2+-DPA的拉曼振动峰数量和峰强度占主要地位,其拉曼振动峰位置在657~663, 818~820, 1 017, 1 389~1 393, 1 441~1 449和1 572~1 576 cm-1波段。C.difficile spores SERS光谱中Ca2+-DPA的六个特征峰峰强度均高于C.perfringens spores和B.cereus spores,C...  相似文献   
9.
食源性致病菌是引发和威胁公众健康的主要因素之一。由于食源性致病菌种类繁多,常规检测方法复杂耗时要求高,因此迫切需要一种更加快速精确的致病菌检测技术。在传统红外光谱检测致病菌的流程中,如经典的溴化钾压片法,除了压片本身的操作之外通常还需对样品进行冷冻干燥(约需2 d)等耗时前处理过程,因而不利于高通量快速检测。本研究利用硒化锌薄膜法,在硒化锌窗片上直接滴加菌液、低温(48 ℃)烘干后进行原位检测,无需漫长的冻干处理,整个检测过程在50 min之内。同时,检测所需样品量少(10 μL)无需研磨等物理破坏性的制样过程,避免了常规溴化钾压片法中研磨颗粒粗细、制片厚薄误差及易碎片、吸潮等的不利影响。四种常见食源性致病菌(大肠杆菌DH5α;沙门氏菌CMCC 50041;霍乱弧菌SH04;金黄色葡萄球菌SH10)的硒化锌薄膜法与溴化钾压片法红外谱图对比分析表明:在相同的峰值检测阈值下(透过率大于0.05%),本研究所采用的方法获得的二阶导数图谱在900~1 500 cm-1范围内可被识别的特征峰个数比溴化钾压片法明显增多(硒化锌薄膜法共计81个,溴化钾压片法共计58个),特征峰在多个位置强度显著增加(1 119,1 085和915 cm-1等),且可将溴化钾压片法中较宽的单峰或不明显的双峰显示为较明显的双峰(大肠杆菌DH5α:1 441,1 391和1 219 cm-1等; 沙门氏菌CMCC 50041:1 490,1 219和1 025 cm-1;霍乱弧菌SH04:1 441和1 219 cm-1;金黄色葡萄球菌SH10:1 491,1 397和1 219 cm-1),说明硒化锌薄膜法可以提高图谱分辨率及信噪比。基于硒化锌薄膜法的原位红外光谱法对常见食源性致病菌整体快速高通量检测将具有巨大的应用前景。  相似文献   
10.
In this study, electronic nose (E-nose) and Hyperspectral Imaging (HSI) was employed for nondestructive monitoring of ultrasound efficiency (20KHZ) in the inactivation of Salmonella Typhimurium, and Escherichia coli in inoculated pork samples treated for 10, 20 and 30 min.Weibull, and Log-linear model fitted well (R2 ≥ 0.9) for both Salmonella Typhimurium, and Escherichia coli inactivation kinetics. The study also revealed that ultrasound has antimicrobial effects on the pathogens. For qualitative analysis, unsupervised (PCA) and supervised (LDA) chemometric algorithms were applied. PCA was used for successful sample clustering and LDA approach was used to construct statistical models for the classification of ultrasound treated and untreated samples. LDA showed classification accuracies of 99.26%,99.63%,99.70%, 99.43% for E-nose - S. Typhimurium, E-nose -E. coli, HSI - S. Typhimurium and HSI -E. coli respectively. PLSR quantitative models showed robust models for S. Typhimurium- (E-nose Rp2 = 0.9375, RMSEP = 0.2107 log CFU/g and RPD = 9.7240 and (HSI Rp2 = 0.9687 RMSEP = 0.1985 log CFU/g and RPD = 10.3217) and E. coli -(E-nose -Rp2 = 0.9531, RMSEP = 0.2057 log CFU/g and RPD = 9.9604) and (HIS- Rp2 = 0.9687, RMSEP = 0.2014 log CFU/g and RPD = 10.1731).This novel study shows the overall effectiveness of applying E-nose and HSI for in-situ and nondestructive detection, discrimination and quantification of bacterial foodborne pathogens during the application of food processing technologies like ultrasound for pathogen inactivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号