首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   0篇
化学   1篇
力学   64篇
数学   2篇
物理学   5篇
  2022年   1篇
  2020年   9篇
  2019年   1篇
  2017年   1篇
  2016年   5篇
  2015年   9篇
  2014年   10篇
  2013年   6篇
  2012年   1篇
  2011年   11篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
In this paper, aeroelastic modeling of aircraft wings with variations in sweep angle, taper ratio, and variable pre-twist angle along the span is considered. The wing structure is modeled as a classical beam with torsion and bending flexibility. The governing equations are derived based on Hamilton’s principle. Moreover, Peters’ finite state aerodynamic model which is modified to take into account the effects of the wing finite-span, the wing sweep angle, and the wing pre-twist angle, is used to simulate the aerodynamic loads on the wing. The coupled partially differential equations are discretized to a set of ordinary differential equations using Galerkin’s approach. By solving these equations the aeroelastic instability conditions are derived. The results are compared with some experimental and analytical results of previous published papers and good agreement is attained. Effects of the wing sweep angle, taper ratio, bending to torsional rigidity, and pre-twist angle on the flutter boundary in several cases are studied. Results show that these geometrical and physical parameters have considerable effects on the wing flutter boundary.  相似文献   
2.
In this paper, the aeroelastic analyses of a rectangular cantilever plate of varying aspect ratio is presented. The classical plate theory has been selected as the structural model. The main point that distinguishes this study from previously reported research is employing Peters’ theory to model aerodynamic effect which is not straightforward. The Peters’ aerodynamic model was originally developed to provide lift and moment, which is only applicable to the structural model based on the beam theories. In this study, using the basic concept of the Peters’ aerodynamic model in addition to utilizing the Fourier series, the pressure distribution is derived, which makes Peters’ model applicable to structural models based on plate theory. This combination provides a much simpler state–space aeroelastic model for plates in comparison to the prevalent panel methods, which could lead to a significant reduction in computational time. In addition, the aeroelastic response of the plate with respect to changes in the structural model from the beam theory to the plate theory is evaluated. By using data from an experiment carried out at Duke University, the theoretical results are evaluated. Furthermore, the differences in structural models obtained from the plate and beam theories can be divided into two distinct parts, which are responsible for differences in bending and torsional behaviors of the structure, separately. This approach enables us to measure the effects of differences of each behavior separately, which could provide with a new insight into the problem. It has been determined that the flutter speeds obtained from the beam and plate aeroelastic models are little affected by the difference in bending behavior, but rather is mainly caused by the difference in torsional frequencies.  相似文献   
3.
The generalized aerodynamic force (GAF) matrix is derived for the Unsteady Vortex Lattice Method (UVLM) without the assumption of out-of-plane dynamics. As a result, the approach naturally includes in-plane motion and forces unlike the doublet lattice method (DLM). The derived UVLM GAF is therefore applicable to industry-standard techniques for aeroelastic stability analyses, such as the p–k method. In this work, the fluid–structure interpolation is performed with radial basis functions for surface interpolation. The generalized aerodynamic forces computed with the UVLM are verified against the DLM from NASTRAN on a simple flat plate configuration. The ability of the UVLM to include steady loads is verified with a T-tail flutter case and the results confirm the importance of including steady loads for T-tail flutter analysis. The modal frequency domain VLM therefore provides the same level of efficiency and accuracy than the DLM, but without the restrictions and with the ability to handle complex geometries. It is therefore a viable replacement to the DLM.  相似文献   
4.
Landing gear doors on aircraft have experienced flutter during preliminary flight testing. While designs vary widely, landing gear doors are typically plate-like structures with a relatively rigid actuator attached to their inside surface. To better understand the aeroelasticity of landing gear doors, this study investigates the aeroelastic stability of an idealized model. The model consists of a hinged plate with an interior constraint approximating the actuator attachment. The plate is subject to uniform flow, and an unsteady vortex lattice model is coupled to the structural model to predict critical flow velocities. The location and footprint area of the internal constraint, along with plate aspect and mass ratios, are varied to investigate a large parameter space. Results reveal that the critical flow speed and instability mechanism are sensitive to the postulated actuator placement. In general, flutter is the dominant mode of instability when the actuator is postulated in the leading quarter of the plate. In other postulated locations, divergence dominates. However, the exact shape and location of the boundary between flutter and divergence is configuration dependent and found to be especially sensitive to changes in aspect ratio.  相似文献   
5.
The stability of a cantilever elastic beam with rectangular cross-section under the action of a follower tangential force and a bending conservative couple at the free end is analyzed. The beam is herein modeled as a non-linear Cosserat rod model. Non-linear, partial integro-differential equations of motion are derived expanded up to cubic terms in the transversal displacement and torsional angle of the beam. The linear stability of the trivial equilibrium is studied, revealing the existence of buckling, flutter and double-zero critical points. Interaction between conservative and non-conservative loads with respect to the stability problem is discussed. The critical spectral properties are derived and the corresponding critical eigenspace is evaluated.  相似文献   
6.
The local dynamic instability of autonomous conservative, lumped-mass (discrete) systems, is thoroughly discussed when negligibly small dissipative forces are included. It is shown that such small forces may change drastically the response of these systems. Hence, existing, widely accepted, findings based on the omission of damping could not be valid if damping, being always present in actual systems, is included. More specifically the conditions under which the above systems may experience dynamic bifurcations associated either with a degenerate or a generic Hopf bifurcation are examined in detail by studying the effect of the structure of the damping matrix on the Jacobian eigenvalues. The case whereby this phenomenon may occur before divergence is discussed in connection with the individual or coupling effect of non-uniform mass and stiffness distribution. Jump phenomena in the critical dynamic loading at a certain mass distribution are also assessed. Numerical results verified by a non-linear dynamic analysis using 2-DOF and 3-DOF models confirm the validity of the theoretical findings as well as the efficiency of the technique proposed herein.  相似文献   
7.
Investigations into a slender system subjected to Beck's generalized load taking into account two rotational springs situated at each end of the system are presented in the paper. One spring models the finite rigidity of the mounting, while the second restricts the rotation of the loaded end of the system. The regions of divergence and flutter instability of the considered system were determined using the kinetic criterion of the stability. The boundary value of the rigidity of the spring situated at the loaded end of the column was also determined. The boundary value of the rigidity separates the regions of divergence and flutter instability. In respect of the problem of vibrations, the characteristic curves in the plane: load - natural frequency were presented. All computations were carried out using the parameters of the considered system, including the rigidity of the springs and the follower coefficient of the load.  相似文献   
8.
Unexpected vibrations on a cylindrical filter made of nonwoven fabrics were clarified experimentally. Two types of filter with length L=1.8 m and 3.7 m, both 45 cm in diameter and 1.08 mm in thickness, were used. This is a new type of aeroelastic vibration phenomenon because the filter is a closed cylindrical vessel. In addition, the flow velocity of inner air was very slow and inner air flowed out slowly from the filter surface. The velocity distribution of air flow from a fan duct as well as the frequency and amplitude of the filter vibration were measured for two types of filter. By setting up a roll core panel at the outlet of the fan duct, we could rectify the outflow and suppressed the vibration of the shorter filter with L=1.8 m. However, this method was not adequate for the longer filter with L=3.7 m, and we could suppress the vibration by shielding the inner surface of the filter at the top region.  相似文献   
9.
A complete first-order model and locally analytic solution method are developed to analyse the effects of mean flow incidence and aerofoil camber and thickness on the incompressible aerodynamics of an oscillating aerofoil. This method incorporates analytic solutions, with the discrete algebraic equations which represent the differential flow field equations obtained from analytic solutions in individual grid elements. The velocity potential is separated into steady and unsteady harmonic parts, with the unsteady potential further decomposed into circulatory and non-circulatory components. These velocity potentials are individually described by Laplace equations. The steady velocity potential is independent of the unsteady flow field. However, the unsteady flow is coupled to the steady flow field through the boundary conditions on the oscillating aerofoil. A body-fitted computational grid is then utilized. Solutions for both the steady and the coupled unsteady flow fields are obtained by a locally analytic numerical method in which locally analytic solutions in individual grid elements are determined. The complete flow field solution is obtained by assembling these locally analytic solutions. This model and solution method are shown to accurately predict the Theodorsen oscillating flat plate classical solution. Locally analytic solutions for a series of Joukowski aerofoils demonstrate the strong coupling between the aerofoil unsteady and steady flow fields, i.e. the strong dependence of the oscillating aerofoil aerodynamics on the steady flow effects of mean flow incidence angle and aerofoil camber and thickness.  相似文献   
10.
When wind blows on trees, leaves flutter. The induced motion is known to affect biological functions at the tree scale such as photosynthesis. This paper presents an experimental and theoretical study of the aeroelastic instability leading to leaf flutter. Experiments in a wind tunnel are conducted on ficus leaves (Ficus Benjamina) and artificial leaves. We show that stability and flutter domains are separated by a well-defined limit depending on leaf orientation and wind speed. This limit is also theoretically predicted through a stability analysis of the leaf motion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号