首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   1篇
化学   17篇
  2022年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
A chemiluminescence signal at 425 nm was observed when ferric state myoglobin was mixed with luminol in alkaline medium. Because the signal was remarkably enhanced in the presence of Fe(CN)6 4–, analytical applications were investigated in a flow-injection system. The increase in chemiluminescence was linearly dependent on myoglobin concentration in the range 0.1 to 100 nmol L–1, and the limit of detection was 0.04 nmol L–1 with relative standard deviation 3.2% (3). It was also found that binding of Mb with the ligands CN, SCN, and F significantly inhibited the chemiluminescence reaction. The linear dynamic ranges for the ligands were 1.0–300.0, 0.1–3.0, and 0.5–100.0 nmol L–1, and the limits of detection (S/N=3) 0.4, 0.04, and 0.2 nmol L–1, for F, CN, and SCN, respectively. The relative standard deviations were 5.32%, 6.13%, and 3.38% for 0.1 nmol L–1 CN, 0.5 nmol L–1 SCN, and 1.0 nmol L–1 F, respectively. At a flow rate of 2.0 mL min–1 the assay could be accomplished in 1 min, including sampling and washing. The method has been successfully applied to the determination of myoglobin in human urine and F in water samples. A possible mechanism of chemiluminescence production by myoglobin and luminol is presented.  相似文献   
2.
The bismuth‐coated electrode is known to be prone to errors caused by copper(II). This study investigates copper(II) interference at bismuth film electrode for the detection of lead(II) and cadmium(II). It was conducted using glassy carbon electrode, while the bismuth film was plated in situ simultaneously with the target metal ions at ? 1200 mV. Copper(II) presented in solution significantly reduced the sensitivity of the electrode, for example there was an approximately 70 % and 90 % decrease in peak signals for lead(II) and cadmium(II), respectively, at a 10‐fold molar excess of copper(II). The decrease in sensitivity was ascribed to the competition between copper and bismuth or the metal ions for surface active sites. Scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) analysis suggested a large decrease in the amount of bismuth nanoparticles formed on the electrode surface in the presence of copper(II) occurred, validating the competition between copper and bismuth ions for surface active sites. Recovery of the stripping signal of lead(II) and cadmium(II) was obtained by adding ferrocyanide ion to the solution. Finally, the proposed method was successfully applied to determine lead(II) and cadmium(II) in water samples and the method was validated by ICP‐MS technique.  相似文献   
3.
The choice of electrode material and surface preparation method are usually dictated by the suitability of the electrode to observe an electrochemical parameter, such as heterogeneous electron transfer rate, surface coverage, or redox potential. Thus, the glassy carbon (GC) and platinum (Pt) electrodes were modified with multiwalled carbon nanotubes (MWCNT) by direct “casting” modification using nine different aliquots of solvents. After drying at room temperature, the modified electrode showed distinct redox peaks corresponding to ferrocyanide oxidation/reduction. Using chemometrics, the cyclic voltammograms with higher current intensity were obtained for those in which ethanol, water and acetone as dispersing agents were used for GCE and dimethylformamide, water and acetone for Pt electrode modification.  相似文献   
4.
Summary HOCl reacts with Fe(CN) 6 4– to generate an intermediate, presumably FeCl(CN) 6 3– , which exhibits a weak absorption around 282 nm and decays simultaneously with the formation of Fe(CN) 6 3– . When decreasing the HOCl/Fe(CN) 6 4– concentration ratio fromR>1 toR<1, a drastic change in the kinetics of the oxidation is observed. Depending onR, the intermediate obviously oxidizes either Fe(CN) 6 4– or HOCl. AtR1, a further intermediate appears which also precedes the oxidation and absorbs strongly around 360 nm. The intermediates detected may represent reactive high oxidation states of iron (Fe(IV) and Fe(VI)). HOCl induced oxidation of Fe(CN) 6 4– is activated catalytically by Br, I, and N 3 , obviously due to generation of stronger oxidants (HOBr, HOI, and ClN3), but oxidation is efficiently inhibited by CN and NCS.
Mechanismen der Oxidation von K4Fe(CN)6 durch Hypochlorsäure und katalytische Aktivierung durch Azid, Bromid und Iodid
Zusammenfassung HOCl reagiert mit Fe(CN) 6 4– unter Bildung eines Intermediats, vermutlich FeCl(CN) 6 3– , das bei 282 nm eine schwache Absorption aufweist und parallel zum Erscheinen von Fe(CN) 6 3– verschwindet. Man beobachtet eine drastische Änderung in der Oxidationskinetik, wenn das HOCl/Fe(CN) 6 4– Konzentrationsverhältnis vonR>1 zuR<1 verändert wird. In Abhängigkeit vonR wird offenbar entweder Fe(CN) 6 4– oder HOCl durch das Intermediat oxidiert. FürR1 erscheint ein weiteres Intermediat mit einer starken Absorptionsbande bei 360 nm, das ebenfalls der Oxidation vorangeht. Bei den beobachteten Intermediaten handelt es sich vermutlich um reaktive höhere Oxidationsstufen des Eisens (Fe(IV) und Fe(VI)). Die HOCl-induzierte Oxidation von Fe(CN) 6 4– wird einerseits durch Br, I und N 3 katalytish aktiviert (offenbar infolge der Bildung stärkerer Oxidantien wie HOBr, HOI und ClN3), andererseits durch CN und NCS effektiv inhibiert.
  相似文献   
5.
6.
网状玻璃碳光谱电化学池的制作及应用   总被引:1,自引:0,他引:1  
制作了一种以网状玻璃碳为工作电极的光谱电化学池,并介绍了对网状玻璃碳电极的处理方法。选用铁氰化钾-亚铁氰化钾体系,对其式量电位(E°′)、反应电子数(n)和扩散系数(D_R)进行了测定,取得较为满意的结果。  相似文献   
7.
We present Finite Element Method (FEM) simulations of interdigitated array (IDA) electrode geometries to study and verify redox selectivity and redox cycling amplification factor. The simulations provide an adequate explanation of an earlier found, but poorly understood, high amplification factor (65×) in a 1 μm‐spaced IDA microdevice. Moreover, using the FEM calculations we present selectivity measurements with IDA electrodes in a mixture of two redox species, as for example dopamine and ferricyanide. We show that it is possible to electrochemically detect dopamine in presence of the stronger reductor ferricyanide, which is impossible with direct amperometric detection, with the use of IDA electrodes with proper polarization potential of the collector electrode. Using our simulations, we show that a theoretical selectivity of dopamine over ferricyanide of 11 can be achieved.  相似文献   
8.
The redox system K4Fe(CN)6 adsorbed into anion exchanger particles (Dowex 1×2 of typically 200 µm diameter) and impregnated with 1‐butyl‐3‐methyl‐imidazolium tetrafluoroborate ionic liquid (BMIM+BF4?) in contact to a 50 µm diameter platinum microelectrode show well‐defined Fe(III/II) voltammetric responses. Processes are studied at the ionic liquid sphere | electrode | gas interface in the presence of dry or 80 % relative humidity argon gas flow. Due to the hygroscopic nature of BMIN+BF4? currents are sensitive to humidity levels. Pulsed and continuous microwave activation (2.45 GHz) is shown to occur locally at the tip of the platinum microelectrode due to focusing of microwave energy. Impedance experiments reveal the presence of a thin active film of ionic liquid.  相似文献   
9.
Electrochemical functionalization via electrochemical oxidation in nitric acid of various concentrations (0.1 M, 0.2 M and 2 M) was employed to enrich the surface of carbon sphere chains (CSCs) with some useful physico‐chemical properties such as hydrophilicity, oxygen functionalities and electron transfer properties. The functionalization process in 2 M HNO3 solution led to the creation of an original hybrid material made of carbon sphere chains‐carbon nanobuds. This material displayed a prominent response towards the electrocatalytic oxidation of ferrocyanide with a peak current three times and twice superior to those delivered by pristine CSC and multiwalled carbon nanotubes (MWCNTs) electrodes, respectively.  相似文献   
10.
Owing to the importance of storage and its hybridization with renewable energy technologies for the energy transition, a high attention has been paid towards the development of redox flow batteries. Among all different emerging technologies, aqueous organic redox flow batteries (AORFBs) are particularly attractive since the objectives in terms of sustainability, cost and safety issues can be achieved owing to the high possibilities offered by molecular engineering, organometallic and coordination chemistry. Thus, AORFBs based on anthraquinones paired with ferrocyanide in basic medium have been widely developed and are close to reach the performances required for industrial processes. This review aims to focus on the main parameters making possible the integration of anthraquinone derivatives as negolyte in AORFB with a special attention for their implementation in industrial process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号