首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   5篇
  国内免费   4篇
化学   39篇
力学   2篇
数学   1篇
物理学   4篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1981年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
A series of sphere-rod shape amphiphiles were designed and synthesized by connecting the rod-like oligofluorenes with different lengths(OF_n) to the different positions of the spherical [60]fullerene(C_(60)) through a rigid linkage. The conjugates were characterized by ~1H-NMR, ~(13)C-NMR, FTIR, EA and MALDI-TOF mass spectrometry. The optical and electronic properties of the conjugates were studied by UV-Vis absorption spectroscopy, fluorescence spectrometry, and cyclic voltammetry. The results from UV-Vis absorption spectroscopy and cyclic voltammetry indicated that the energy profiles of C_(60) and OF_n remained unchanged when different lengths of OF_n were attached to C_(60). The electron affinities of the OF_n-C_(60) conjugates were close to that of C_(60), while slight electronic interaction was found between the two individual chromophores(C_(60) and OF_n) in their ground states. The fluorescence spectra exhibited a complete fluorescence quenching in the toluene solution, suggesting an effective energy transfer from OF_n to C_(60). It presents a systematic study on the selfassembly, structure-property relationship, and potential technical applications of the conjugates.  相似文献   
2.
《Mendeleev Communications》2021,31(6):807-809
Two new heptamethine cyanine dye–fullerene C60 covalently- linked dyads, which absorb in far-red and NIR spectral regions, have been synthesized by esterification click reaction and characterized by physicochemical methods. No significant fluorescence quenching was found due to weak electronic coupling between heptamethine moiety and fullerene core, which was confirmed by photophysical and electrochemical methods. Such dyads can be useful for cell imaging and fluorescence diagnostics of various fullerene derivatives.  相似文献   
3.
A new base metal iron-cobalt dyad has been obtained by connection between a heteroleptic tetra-NHC iron(II) photosensitizer combining a 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine with 2,6-bis(3-methyl-imidazol-2-ylidene)-4,4′-bipyridine ligand, and a cobaloxime catalyst. This novel iron(II)-cobalt(III) assembly has been extensively characterized by ground- and excited-state methods like X-ray crystallography, X-ray absorption spectroscopy, (spectro-)electrochemistry, and steady-state and time-resolved optical absorption spectroscopy, with a particular focus on the stability of the molecular assembly in solution and determination of the excited-state landscape. NMR and UV/Vis spectroscopy reveal dissociation of the dyad in acetonitrile at concentrations below 1 mM and high photostability. Transient absorption spectroscopy after excitation into the metal-to-ligand charge transfer absorption band suggests a relaxation cascade originating from hot singlet and triplet MLCT states, leading to the population of the 3MLCT state that exhibits the longest lifetime. Finally, decay into the ground state involves a 3MC state. Attachment of cobaloxime to the iron photosensitizer increases the 3MLCT lifetime at the iron centre. Together with the directing effect of the linker, this potentially makes the dyad more active in photocatalytic proton reduction experiments than the analogous two-component system, consisting of the iron photosensitizer and Co(dmgH)2(py)Cl. This work thus sheds new light on the functionality of base metal dyads, which are important for more efficient and sustainable future proton reduction systems.  相似文献   
4.
Herein, we introduce the cyclic 8π-electron (C8π) molecule N,N′-diaryl-dihydrodibenzo[a,c]phenazine ( DPAC ) as a dual-functional donor to establish a series of new donor–linker–acceptor (D–L–A) dyads DLA1 – DLA5 . The excited-state bent-to-planar dynamics of DPAC regulate the energy gap of the donor, while the acceptors A1 – A5 are endowed with different energy gaps and HOMO/LUMO levels. As a result, the rate and efficiency of the excited-state electron transfer vs. energy transfer can be finely harnessed, which is verified via steady-state spectroscopy and time-resolved emission measurements. This comprehensive approach demonstrates, for the first time, the manifold of excited-state properties governed by bifunctional donor-based D–L–A dyads, including bent-to-planar, photoinduced electron transfer (PET) from excited donor to acceptor (oxidative-PET), fluorescence resonance energy transfer (FRET), bent-to-planar followed by electron transfer (PFET), and PET from donor to excited acceptor (reductive-PET).  相似文献   
5.
本文采用基于多体格林函数方法和Bethe-Salpeter方程(GW/BSE)的电子结构计算方法和非绝热动力学模拟研究了两种不同桥连化学键构型(5-6构型和6-6构型)的酞菁锌-富勒烯(ZnPc-C60)给受体复合物的激发态性质及其弛豫过程. 对于6-6构型,ZnPc-C60的最低激发态S1态为光谱明态,即ZnPc的局域激发(LE)态,因此,6-6构型的ZnPc-C60在光激发之后几乎不会发生电荷分离过程. 相比之下,5-6构型的ZnPc-C60的S1态是C60的LE态,为光谱暗态,而作为光谱明态的ZnPc的LE态的能量更高. 而且,在ZnPc和C60的LE态之间还存在若干电荷转移(CT)态. 因此,电荷转移会在从高能的ZnPc的LE态到低能的C60的LE态的弛豫过程中发生. GW/BSE级别的非绝热动力学模拟结果进一步验证了电子结构计算的结论,并给出了相关过程的时间尺度:从ZnPc到C60的超快激发态能量转移过程在前200 fs完成;随后发生的是由C60到ZnPc的超快空穴转移过程. 本工作表明不同的桥连化学键模式(即5-6和6-6构型)可用于调节ZnPc-C60给体-受体复合物的激发态性质及其光电性质. 与此同时,本工作证明了GW/BSE级别的非绝热动力学方法是探索非周期性给体-受体复合物、有机金属配合物、量子点、纳米团簇等复杂体系的光诱导动力学的可靠工具.  相似文献   
6.
The results of studies on the synthesis of porphyrin-quinone compounds and investigation of their photochemical properties are summarized. Effects of various factors (the redox potential, the distance between donor and acceptor moieties, their spatial orientation, the free energy of the reaction, and solvents) on the photoinduced electron transfer in these model systems are discussed. The dyad and triad model systems have been compared. The possibility of using these systems for modeling the primary steps of photosynthesis is discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1. pp. 9–24, January, 1996.  相似文献   
7.
Unlike extensively studied diradicals linked by π‐conjugated systems, only a few studies have investigated weakly coupled diradicals linked by an sp3 carbon atom. Herein, we prepared pyrrolidin‐1‐oxyl–(nitronyl nitroxide)‐dyad 5 and pyrrolidin‐1‐oxyl–iminonitroxide‐dyad 6 . From the observed temperature dependence of the magnetic susceptibility, 5 and 6 were determined to be in singlet ground states with 2Jintra/kB=?35.2 K and ?13.6 K, respectively. From these results and theoretical calculations of related diradicals, the spin‐polarization model counting the small spin density of the sp3 carbon atom could be used as a spin‐prediction model.  相似文献   
8.
具有新颖共轭顺-烯二炔结构的天然产物可精巧地引发顺-烯二炔的闭环反应而产生双自由基,从癌细胞DNA糖磷脂骨架上夺取氢原子,促成病变细胞氧化断裂而产生强烈的抗癌功效(比阿霉素抗癌活性大4000倍)。作为保证抗肿瘤疗效的另一重要因素是提高抗癌药物对病变组织的选择性,基于用于光动力疗法(PDT)的抗癌药物卟啉类化合物识别和选择性富集于肿瘤细胞的特殊功能,  相似文献   
9.
The radical copolymerizations of chloroprene (CP) and maleic anhydride (MAH) were carried out with AIBN in 1,4-dioxane at 60°C. The monomer reactivity ratios were estimated as r1 (CP) = 0.38 and r2 (MAH) = 0.07. Microstructures in the copolymer of chloroprene (CP) and maleic anhydride (MAH) were investigated by 75.4 MHz 13C-and 300 MHz 1H-NMR spectroscopies. Resonances were assigned to the monomer sequence dyads CC, CM, and MC (C = chloroprene, M = maleic anhydride). Well resolved fine structure in the 13C-NMR spectra showed that 1,2- and 3,4-structural chloroprene units were negligible in the copolymer. The pyrolysis characterization of the copolymer was also investigated by the pyrolysis gas chromatography mass spectrometry (GC/MS). The fragments of CP and MAH monomers and CP-MAH hybrid dimer, CO, and CO2 were identified after pyrolysis of the copolymer. © 1994 John Wiley & Sons, Inc.  相似文献   
10.
Square‐planar polypyridyl platinum(II) complexes possess a rich range of structural and spectroscopic properties that are ideal for designing artificial photosynthetic centers. Taking advantage of the directionality in the charge‐transfer excitation from the metal to the polypyridyl ligand, we describe here diplatinum(II)–ferrocene dyads, open‐butterfly‐like dyad 1 and closed‐butterfly‐like dyad 2 , which were designed to understand the conformation and orientation effects to prolong the lifetime of charge‐separated state. In contrast to the open‐butterfly‐like dyad 1 , the closed‐butterfly‐like dyad 2 shows three‐times long lifetime of charge separated state upon photoexcitation, demonstrating that the orientation in the rigid structure of dyad 2 is a very important issue to achieve long‐lived charge separated state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号